Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

‘Miratho’ seeks to drive policy-changing research through international collaboration
2017-09-29

Description: ' AM Bathmaker CRHED Miratho Tags: AM Bathmaker CRHED Miratho

From the left: Phathu Mudau (Thusanani Foundation),
Prof Melanie Walker (UFS), Prof Ann-Marie Bathmaker
(University of Birmingham), Prof Monica McLean
(University of Nottingham), and Fulu Ratshisusu
(Thusanani Foundation).

Photo: Eugene Seegers

Miratho is a TshiVenda word that refers to informal, self-made bridges, which are usually built by rural community members during floods or other natural disasters. These are usually dangerous, unstable constructions, and only the brave tend to use them. When community members build miratho, though, they create opportunities for stranded students to attend school. Miratho symbolise the determination to access education even in the face of danger, and working with others to make progress.

The Miratho Research Project is led by the Centre for Research on Higher Education and Development (CRHED) at the University of the Free State (UFS), in partnership with the Universities of Birmingham and Nottingham in the UK, and the Thusanani Foundation. The project is jointly funded by the Economic and Social Research Council and the Department for International Development in the UK, as well as the National Research Foundation in South Africa. The project research team consists of Prof Melanie Walker, Prof Merridy Wilson-Strydom and Dr Mikateko Höppener from CRHED at the UFS, Prof Monica McLean from the University of Nottingham, and Prof Ann-Marie Bathmaker from the University of Birmingham.

Miratho is a four-year project, stretching until August 2020, which seeks to investigate multidimensional dynamics shaping or inhibiting disadvantaged students’ capabilities to access higher education, participate and succeed in it, as well as move from higher education to work. By means of a systematic, integrated and longitudinal mixed-methods investigation, Prof Walker and her team, in close collaboration with the Thusanani Foundation, aim to develop an inclusive, capabilities-based higher education Index, which in turn would serve to inform policy and practice interventions that challenge inequalities that have an impact on learning outcomes.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept