Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

UFS Physics Research Chair receives more funding
2017-11-20


 Description: Prof Hendrik Swart, Physics Research Chair receives more funding Tags: Prof Hendrik Swart, Physics Research Chair receives more funding

Prof Hendrik Swart, Senior Researcher Professor in the
Department of Physics at UFS.
Photo: Charl Devenish

A research project into low-energy lighting using phosphor materials for light emitting diodes (LEDs) at the Department of Physics at the University of the Free State (UFS) has received further recognition. 

The South African Research Chairs Initiative (SARChi) has awarded further funding for the Research Chair in Solid State Luminescent and Advanced Materials situated in the department. Prof Hendrik Swart, a Senior Research Professor in the Department of Physics, says this means that the Chair will carry on receiving funds from SARChi for another five years. The Initiative also awarded Prof Swart in 2012 for the research, which resulted in funding for equipment and among others, bursaries.    

Better light emission in LED’s
The research focuses on better light emission of phosphor powers in LEDs. It is also looking into improving LED displays in flat screens. The research into solar cells has shown that phosphors can also increase their efficiency by increasing the range of light frequencies, which convert into electricity. It also entails that glow-in-the-dark coatings absorb light during the day and emit it at night. 

Prof Swart says over the next five years the research will focus on developing and producing devices that emit better light using the substances already developed. “We need to make small devices to see if they are better than those we already have.” In practical terms, it means they want a farmer’s water pump that works with solar energy to work better with less energy input.” 

Device that simulates sunlight
Prof Swart says the renewal of the Chair’s funding means the department can now get equipment to enhance its research   such as a solar simulator. The solar simulator uses white LEDs whose intensity output and wavelengths can be tuned. The output is measured in number of suns. It enables researchers to work in a laboratory with a device that simulates sunlight.     

According to Prof Swart the long-term benefit of the research will result in more environmentally friendly devices which use less energy, are brighter and give a wider viewing field. 

About 10 postdoctoral researchers are working on the studies done by the Chair in collaboration with the Council for Scientific and Industrial Research. 

The Research Chair Initiative aims to improve the research capacity at public universities to produce high-quality postgraduate students, research and innovative outputs. The criterion for evaluating the department’s Chair includes aspects such as how much development has occurred over the past five years. The assessors look at features such as the number of students the research entity has trained and how many publications the research team has produced.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept