Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Soetdoring/Kagiso pair-up wins 2015 Stagedoor
2015-03-03

With a new format and residences mixing it up, the 2015 Stagedoor proved to be a success yet again, leaving Soetdoring and Kagiso with the spoils of victory.

Stagedoor (the annual first-year residence stage and serenade competition) saw a change of format this year where residences were combined to perform in a few number of outdoor venues for rotations.

Prior to this, Residence CoRC Cultures expressed much concern regarding the co-operation that might (or might not) be achieved with working with other residences. These were all early stage fears. However, as their preparations progressed there seemed to be a glint of light at the end of many groups’ tunnels.

Seven diverse and combined groups made it through to final, namely;

• Vishuis and Tswelopele,
• Karee and Armentum,
• Sonnedou and NJ van der Merwe,
• Soetdoring and Kagiso,
• Roosmaryn and Vergeert-My-Nie,
• Villa Bravado and Madelief, and
• and Veritas and Marjolein.

The finals proved that the efforts and sleepless nights of RC Cultures, first-years, composers, and other behind-the-scenes contributors can really make any situation work.

As always, the crowd was blown away by the musical and vocal talent of first-years, as some compositions gave the audience goose bumps, leaving them asking for more. All in all, the evening created a frenzy, causing residences to interact whereas they would have never done so before.

According to the Student Affairs’ Arts and Culture office, the aim behind the new format was to break the barriers between residences. Arts and Culture were also pleased as to with how the RCs worked around accommodating their partners and ensuring maximum co-operation, despite some challenges.

As the night neared its closeclosing, residences were chanting their names and showing their pride in their first years’ performances.

2015 Stagedoor final results:

1. Soetdoring and Kagiso
2. Roosmaryn and Vergeet-My-Nie
3. Vishuis and Tswelopele

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept