Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

UFS keeps the power on
2015-06-24

 

At a recent Emergency Power Indaba held on the Bloemfontein Campus, support structures at the university met to discuss the Business Continuity Intervention Plan to manage load shedding on the three campuses of the UFS.

Currently, 35 generators serving 55 of the buildings have already been installed as a back-up power supply on the three campuses of the university. According to Anton Calitz, Electrical Engineer at the UFS, the running cost to produce a kWh of electricity with a diesel generator amounts to approximately three times the cost at which the UFS buys electricity from Centlec.

Planned additional generators will attract in excess of R4 million in operating costs per year. For 2015, the UFS senior leadership approved R11 million, spread over the three campuses. Remaining requirements will be spread out over the next three years. University Estates is also looking at renewable energy sources.

On the Bloemfontein Campus, 26 generators serving forty-one buildings are in operation. On South Campus, two generators were installed at the new Education Building and at the ICT Server Room. Lecture halls, the Arena, the Administration Building, and the library will be added later in 2015. Eight generators serving 12 buildings are in operation on the Qwaqwa Campus. In 2015, the Humanities Building, Lecture Halls and the heat pump room will also be equipped with generators.

Most buildings will be supplied only with partial emergency power. In rare cases, entire buildings will be supplied because the cost of connecting is lower than re-wiring for partial demand. According to Nico Janse van Rensburg, Senior Director at University Estates, emergency power will be limited to lighting and power points only. No allowances will be made for air-conditioning.

“Most area lighting will also be connected to emergency power,” he said.

Where spare capacity is available on existing emergency power generators, requests received for additional connections will be added, where possible, within the guidelines. The following spaces will receive preference:
- Lecture halls with the lights, data projectors, and computers running
- Laboratories for practical academic work and sensitive research projects
- Academic research equipment that is sensitive to interruptions
- Buildings hosting regular events

According to Janse van Rensburg, all further needs will be investigated. Staff can forward all emergency power supply needs to Anton Calitz at calitzja@ufs.ac.za

Staff and students can also manage load shedding in the following ways:

1. Carry a small torch with you at all times, in case you are on a stairwell or other dark area when the lights go out. You can also use the flashlight app on your phone. Download it before any load shedding occurs. This can come in handy if the lights go out suddenly, and you cannot find a flashlight. Load-shedding after dark imposes even more pressure on our Campus Security staff. We can assist them with our vigilance and preparedness by carrying portable lights with us at all times and by assisting colleagues.
2. Candles pose a serious safety risk. Rather use battery- or solar-powered lights during load shedding.
3. Ensure that your vehicle always has fuel in the tank, because petrol stations cannot pump fuel during power outages.
4. Ensure that you have enough cash, because ATMs cannot operate without electricity.
5. The UFS Sasol Library has study venues available which students can use during load shedding.
6. When arranging events which are highly dependent on power supply, especially at night, organisers should consult the load-shedding schedule before determining dates and preferably also make back-up arrangements. If generators are a necessity, the financial impact should be taken into consideration.

The senior leadership also approved a list of buildings to be equipped with emergency power supplies.

More about load shedding at the UFS:
Getting out of the dark
More information, guidelines and contact information

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept