Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Extension of the academic calendar
2016-03-21

At the Senate meeting which was held on 29 February 2016, a resolution was taken to extend the academic calendar by one week to make up for the lost academic week as a result of the recent student protest action. In particular, it was decided that the commencement of the mid-year exams be postponed by one week. The Faculty of Health Sciences was the only faculty that was allowed to stick to the initial dates.

At its meeting of 2 March 2016, Rectorate discussed this matter and resolved to endorse the resolution of Senate, namely that the mid-year exams will be postponed by one week and that only the Faculty of Health Sciences can stick to the original dates as stipulated in the calendar.

 

Undergraduate lectures

(Excluding Faculty of Health Sciences)

 

First semester

Lectures start: 1 February 2016
Lectures end: 20 May 2016

8-credit modules

1 February 2016 - 1 April 2016
11 April 2016 - 20 May 2016

Holiday:
22 - 24 March 2016

Easter Weekend: 25 - 28 March 2016

Main mid-year examinations

Start: 23 May 2016
End: 11 June 2016

Additional mid-year examinations


Start: 13 June 2016
End: 4 July 2016
End of first semester: 8 July 2016

Holiday:
11 July 2016 - 15 July 2016

Second semester

 

Undergraduate lectures

(Excluding Faculty of Health Sciences)

Lectures start: 18 July 2016
Lectures end: 21 October 2016

8 Credit modules

18 July 2016 - 2 September 2016
5 September 2016 - 21 October 2016

Holiday: 3 - 7 October 2016

Main end-of-year examinations


Starts: 24 October 2016
Ends: 12 November 2016

Additional end-of-year examinations


Starts: 14 November 2016
Ends: 3 December 2016

End of Second Semester

9 December 2016

UFS holiday: 8 August 2016.

UFS recess from: 20 December 2016 - 3 January 2017.

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept