Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Center for Universal Access and Disability Support (CUADS) produces 22 graduates
2016-04-26

Description: Lutho Xintolo and mom Tags: Lutho Xintolo and mom

Lutho Xintolo (right) is one of the Centre for Universal Access and Disability Support 2016 graduates. She is currently pursuing her Honours in Psychology.
Photo: Supplied

Once again, the University of the Free State (UFS) hosted a successful series of graduations from 12-15 April 2016 where 3681 students were conferred qualifications at the Bloemfontein Campus. Among those graduating were 22 students who are affiliated with the university’s Center for Universal Access and Disability Support (CUADS).

Some of these students included Zingisa Ngwenya, who is currently busy with her second degree; Grant Lombaard, Zanele Morerwa, and Lutho Xintolo, all of whom are pursuing their Honours degrees. Louzanne Coetzee, a visually-impaired international champion athlete, was awarded a Communication: Corporate Marketing Honours degree this autumn. “We have five athletes and a cyclist with disabilities, amongst our students who are of world-class standard,” said Martie Miranda, Head of the Center.

The Center assists students to gain access to study courses, buildings, and lecture venues, learning material such as Braille, audio, enlarged print, and E-text, computer facilities with assistive technology and software and adapted hardware, and a specialised examination and test venue for alternative test and exam procedures,” Miranda added.

Students with disabilities who enrol with CUADS receive support according to their individual needs from registration through to graduation.  “During this process we identify challenges experienced in their administrative, academic, support, student life, and physical environments, and then address these challenges,” Miranda said.

Support provided by the Center includes amanuenses and extra time during tests and exams according to the student’s specific needs, (as determined through evaluation by the Extra Time Panel), together with Student Counselling and Development, academic tutors provided by the New Academic Tutor programme in collaboration with the UFS Centre for Teaching and Learning, and Sign Language interpreters or lip-speakers as well as real-time captioning.

Students with specific learning difficulties, mobility, visual, or hearing impairments, psychological, or other chronic conditions that might have a disabling effect on them, as well as those with temporary impairments, are fully supported by the CUADS. The Center strives to ensure that students achieve their full potential throughout their journey with our university.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept