Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Names are not enough: a molecular-based information system is the answer
2016-06-03

Description: Department of Plant Sciences staff Tags: Department of Plant Sciences staff

Prof Wijnand Swart (left) from the Department of
Plant Sciences at the UFS and Prof Pedro Crous
from the Centraalbureau voor Schimmelcultures (CBS),
in the Netherlands.
Photo: Leonie Bolleurs

South Africa is the second-largest exporter of citrus in the world, producing 60% of all citrus grown in the Southern Hemisphere. It exports more than 70 % of its citrus crop to the European Union and USA. Not being able to manage fungal pathogens effectively can have a serious impact on the global trade in not only citrus but also other food and fibre crops, such as bananas, coffee, and cacao.

The Department of Plant Sciences at the University of the Free State (UFS) hosted a public lecture by Prof Pedro W. Crous entitled “Fungal Pathogens Impact Trade in Food and Fibre: The Need to Move Beyond Linnaeus” on the Bloemfontein Campus.

Prof Crous is Director of the world’s largest fungal Biological Resource Centre, the Centraalbureau voor Schimmelcultures (CBS), in the Netherlands. He is also one of the top mycologists in the world.

Since the topic of his lecture was very pertinent to food security and food safety worldwide, it was co-hosted by the Collaborative Consortium for Broadening the Food Base, a multi-institutional research programme managed by Prof Wijnand Swart in the Department of Plant Sciences.

Reconsider the manner in which pathogens are identified

Prof Crous stressed that, because international trade in products from agricultural crops will expand, the introduction of fungal pathogens to new regions will increase. “There is therefore an urgent need to reconsider the manner in which these pathogens are identified and treated,” he said.

According to Prof Crous, the older Linnaean system for naming living organisms cannot deal with future trade-related challenges involving pests and pathogens. A system, able to identify fungi based on their DNA and genetic coding, will equip scientists with the knowledge to know what they are dealing with, and whether it is a friendly or harmful fungus.

Description: The fungus, Botrytis cinerea Tags: The fungus, Botrytis cinerea

The fungus, Botrytis cinerea, cause of grey mould
disease in many fruit crops.
Photo: Prof Wijnand Swart

Embrace the molecular-based information system

Prof Crous said that, as a consequence, scientists must embrace new technologies, such as the molecular-based information system for fungi, in order to provide the required knowledge.

He presented this very exciting system which will govern the manner in which fungal pathogens linked to world trade are described. This system ensures that people from different countries will know with which pathogen they are dealing. Further, it will assist with the management of pathogens, ensuring that harmful pathogens do not spread from one country to another.

More about Prof Pedro Crous


Prof Crous is an Affiliated Professor at six international universities, including the UFS, where he is associated with the Department of Plant Sciences. He has initiated several major activities to facilitate global research on fungal biodiversity, and has published more than 600 scientific papers, many in high impact journals, and authored or edited more than 20 books.

 

 

Biography Prof Pedro Crous
Philosophical Transactions of the Royal Society B


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept