Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 April 2018 Photo Leonie Bolleurs
First accredited ICS training in SA presented at UFS
Prof Andries Jordaan, Head of DiMTEC, with Greg Archer from the United States Forest Services, and Yong Sebastian Nyam, a DiMTEC PhD student from Cameroon.

The University of the Free State’s (UFS) Disaster Management Training and Education Centre for Africa (DiMTEC) and the Free State Umbrella Fire Protection Association (FSUFPA) presented the first training exercise in the Free State, offering practical experience regarding the implementation of the Incident Command System (ICS) under simulated emergency conditions.

An Exercise Coordination Team (ECT), consisting of US instructors, under the leadership of Mike Kopitzke from the United States Forest Services, together with Johann Breytenbach from FSUFPA and supported by local personnel, facilitated the exercise.

Training complete with sand table exercise 

This dual site desktop exercise took place at the Rooipoort Training Centre outside Dewetsdorp and the DiMTEC offices in the Agriculture Building on the UFS Bloemfontein Campus. The Incident Management Team (IMT) training – complete with a sand table exercise   was presented at Rooipoort, At the same time a simulation of an Emergency Operations Centre (EOC) was offered at the DiMTEC offices. 

According to Prof Andries Jordaan, Head of DiMTEC, the exercise was based on a variety of actual scenarios that had previously taken place elsewhere in the Free State. The exercise simulated a train and bus accident on the Thaba Nchu road. “Using an incident like this keeps the training realistic and relevant,” he said.

In these exercises the work of different departments, including South African Police Services (SAPS), South African National Defence Force (SANDF), Transnet, Spoornet, Traffic Department, and Eskom are coordinated. “We would like to work with the National Disaster Management Centre (NDMC) to implement a uniform Incident management system in South Africa where all departments speak the same language and have the same understanding of the role and responsibilities of a command structure,” Prof Jordaan said.

Accredited training the outcome
In 2017 Prof Jordaan, General Elias Mahlabane from the SAPS, and Johan Breytenbach from the FSUFPA, attended an incident command course in California in the US. They were introduced to the National Incident Management System (NIMS) in the US. The system was implemented after lessons learned during 9/11. “According to the NIMS structure, all government organisations at all levels, as well as emergency agencies, had to standardise terminology and systems,” said Prof Jordaan.

Insight gained during the visit and a work relationship with the United State Forest Services, provided Prof Jordaan and Breytenbach the necessary background to conduct training for incident management teams.

Currently DiMTEC is offering accredited ICS 100, 200 and 300 courses. To qualify as incident command managers, students need to attend the ICS courses together with the practical training. As part of the training they also need to shadow a qualified ICS manager during two real incidents. These courses are taking place in conjunction with the FSUFPA. 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept