Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 August 2018 Photo Igno van Niekerk
Chemistry changing the world to create a better future
These practical applications of Chemistry are part of the relevant and practically applicable research Prof André Roodt (far left) and his research group are involved in. With him are Dr Ebrahiem Botha, Post-doctoral fellow; Pheelo Nkoe, PhD student; Shaun Redgard, MSc student; and Dr Orbett Alexander, Post-doctoral fellow

Some people have a gift for explaining the most complex concepts in a way anyone could understand. Combine this gift with passion, energy, and enthusiasm, and you are close to describing a meeting with Prof André Roodt

Prof Roodt not only teaches Chemistry, he lives it. He has published more than 320 papers, lectured internationally more than 100 times, and has guided 35 PhD and 48 MSc students to complete their degrees. These figures are likely to conjure up visions of a dusty academic working on pie-in-the-sky theories. 

Adding value

Within minutes you are made aware of the fact that Chemistry is not only a subject confined to classrooms and labs. It is a means of changing the world through research to create a better future. In academic terms, Prof Roodt and his team are involved in ‘Homegeneous Catalysis’, ‘Radiopharmacy: Theranostics’, ‘Metal Benefication’, and ‘Conversion of carbon dioxide and water’. And just when you start to remember how terrifying high-school Chemistry was, Prof Roodt explains the practical nature of what they are doing.

Few of us are aware of the exact processes that produce fuel for our cars, although we probably know that these processes have side effects which are usually detrimental to the environment; but what if the by-products of these processes can be turned into speciality chemicals which could add value in different ways?

Ever wondered how medication know where to go in your body? Well – just imagine highly specialised (clever) pharmaceutical agents giving off their own ‘light’, knowing exactly where to go, showing you where they are going, and knowing what to do in order to provide information and interact with specific cells in your body to assist in healing cells and fighting disease. Exciting.

Passionate people

But, as they say in the ads, that is not all; imagine better ways to generate power, using the natural processes in plants to increase natural oxygen where needed, and to be able to change oxygen levels in the environment.

These practical applications of Chemistry are part of the relevant and practically applicable research Prof Roodt and his research group are involved in.

When you leave Prof Roodt’s office, you realise that this is what the UFS is all about: Global impact. World-class research. Passionate people. And seizing the opportunity to create the future.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept