Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 August 2018 Photo Igno van Niekerk
Chemistry changing the world to create a better future
These practical applications of Chemistry are part of the relevant and practically applicable research Prof André Roodt (far left) and his research group are involved in. With him are Dr Ebrahiem Botha, Post-doctoral fellow; Pheelo Nkoe, PhD student; Shaun Redgard, MSc student; and Dr Orbett Alexander, Post-doctoral fellow

Some people have a gift for explaining the most complex concepts in a way anyone could understand. Combine this gift with passion, energy, and enthusiasm, and you are close to describing a meeting with Prof André Roodt

Prof Roodt not only teaches Chemistry, he lives it. He has published more than 320 papers, lectured internationally more than 100 times, and has guided 35 PhD and 48 MSc students to complete their degrees. These figures are likely to conjure up visions of a dusty academic working on pie-in-the-sky theories. 

Adding value

Within minutes you are made aware of the fact that Chemistry is not only a subject confined to classrooms and labs. It is a means of changing the world through research to create a better future. In academic terms, Prof Roodt and his team are involved in ‘Homegeneous Catalysis’, ‘Radiopharmacy: Theranostics’, ‘Metal Benefication’, and ‘Conversion of carbon dioxide and water’. And just when you start to remember how terrifying high-school Chemistry was, Prof Roodt explains the practical nature of what they are doing.

Few of us are aware of the exact processes that produce fuel for our cars, although we probably know that these processes have side effects which are usually detrimental to the environment; but what if the by-products of these processes can be turned into speciality chemicals which could add value in different ways?

Ever wondered how medication know where to go in your body? Well – just imagine highly specialised (clever) pharmaceutical agents giving off their own ‘light’, knowing exactly where to go, showing you where they are going, and knowing what to do in order to provide information and interact with specific cells in your body to assist in healing cells and fighting disease. Exciting.

Passionate people

But, as they say in the ads, that is not all; imagine better ways to generate power, using the natural processes in plants to increase natural oxygen where needed, and to be able to change oxygen levels in the environment.

These practical applications of Chemistry are part of the relevant and practically applicable research Prof Roodt and his research group are involved in.

When you leave Prof Roodt’s office, you realise that this is what the UFS is all about: Global impact. World-class research. Passionate people. And seizing the opportunity to create the future.

News Archive

Double achievement for Prof. Paul Grobler
2012-04-25

 

Prof. Paul Grobler
Photo: Supplied
25 April 2012

Early this year, two journal editions appearing almost simultaneously in Europe featured cover photographs based on papers by Prof. Paul Grobler of the Department of Genetics and his collaborators.

These papers stem from collaborations with Prof. Gunther Hartl at the University of Kiel (Germany) and Dr Frank Zachos from the Natural History Museum in Vienna (Austria). Both papers cover aspects of the genetics of southern African antelope species.
 
The first paper appeared in the Journal of Zoological Systematics and Evolutionary Research” (from the Wiley-Blackwell group). This was titled “Genetic structure of the common impala (Aepyceros melampus melampus) in South Africa: phylogeography and implications for conservation”.
 
In this paper, the team analysed impala from various localities in South Africa to determine the relationship between distribution and genetic structure. The results suggest a clear relationship between genetic characteristics and habitat features that regulate gene flow.
 
The second appeared in the journal Mammalian Biology (from the Elsevier group), with the title “Genetic analysis of southern African gemsbok (Oryx gazella), reveals high variability, distinct lineages and strong divergence from the East African Oryx beisa”.
 
Here, the researchers looked at various aspects of the genetics and classification of gemsbok. Among the notable findings is that gemsbok populations on the game farms studied are less inbred than previously predicted.
 
Proffs. Grobler and Hartl initiated these projects on gemsbok and impala, with sub-sections of the research later completed as M.Sc. projects by students from both South Africa and Germany.
 
Prof. Grobler has been involved with aspects of the population genetics of various mammal species since the early 1990s, and continued with this line of research after joining the UFS in 2006. Current projects in this field include work on wildebeest, vervet monkeys and white rhinoceroses.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept