Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 August 2018 Photo Igno van Niekerk
Chemistry changing the world to create a better future
These practical applications of Chemistry are part of the relevant and practically applicable research Prof André Roodt (far left) and his research group are involved in. With him are Dr Ebrahiem Botha, Post-doctoral fellow; Pheelo Nkoe, PhD student; Shaun Redgard, MSc student; and Dr Orbett Alexander, Post-doctoral fellow

Some people have a gift for explaining the most complex concepts in a way anyone could understand. Combine this gift with passion, energy, and enthusiasm, and you are close to describing a meeting with Prof André Roodt

Prof Roodt not only teaches Chemistry, he lives it. He has published more than 320 papers, lectured internationally more than 100 times, and has guided 35 PhD and 48 MSc students to complete their degrees. These figures are likely to conjure up visions of a dusty academic working on pie-in-the-sky theories. 

Adding value

Within minutes you are made aware of the fact that Chemistry is not only a subject confined to classrooms and labs. It is a means of changing the world through research to create a better future. In academic terms, Prof Roodt and his team are involved in ‘Homegeneous Catalysis’, ‘Radiopharmacy: Theranostics’, ‘Metal Benefication’, and ‘Conversion of carbon dioxide and water’. And just when you start to remember how terrifying high-school Chemistry was, Prof Roodt explains the practical nature of what they are doing.

Few of us are aware of the exact processes that produce fuel for our cars, although we probably know that these processes have side effects which are usually detrimental to the environment; but what if the by-products of these processes can be turned into speciality chemicals which could add value in different ways?

Ever wondered how medication know where to go in your body? Well – just imagine highly specialised (clever) pharmaceutical agents giving off their own ‘light’, knowing exactly where to go, showing you where they are going, and knowing what to do in order to provide information and interact with specific cells in your body to assist in healing cells and fighting disease. Exciting.

Passionate people

But, as they say in the ads, that is not all; imagine better ways to generate power, using the natural processes in plants to increase natural oxygen where needed, and to be able to change oxygen levels in the environment.

These practical applications of Chemistry are part of the relevant and practically applicable research Prof Roodt and his research group are involved in.

When you leave Prof Roodt’s office, you realise that this is what the UFS is all about: Global impact. World-class research. Passionate people. And seizing the opportunity to create the future.

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept