Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 August 2018 Photo Sonia Small
Karen Lazenby WomenofKovsies
Dr Karen Lazenby strives for a stronger, rule-based, and consistent governance structure.

A transformed University of the Free State (UFS) will be one that promotes social justice in everything it does, a university where its diverse people feel a sense of common purpose and engagement. The UFS is developing this through its Integrated Transformation Plan (ITP) introduced in January 2017. 

“The majority of the current systems and processes in student administration at the university are still manual. This lack of automation leads to inconsistencies and service failures,” says Dr Karen Lazenby. As Registrar for Systems and Administration, Dr Lazenby is responsible for ensuring a smooth and efficient student lifecycle across all three campuses. 

With the ITP, the Governance: Systems and Administration work stream strives to have a stronger, rule-based, and consistent governance structure with a single line of accountability in student administration across all faculties and relevant support departments on the three campuses. By ensuring this ease of use and access there will be an integrated student experience and greater empowerment of students.

“Our focus is on automation and self-services for students (such as the time-table, requests for additional and ad hoc exams and appeals), to ensure transparency and accessibility of rules and policies, decisions relating to admission, progression rules, awarding of qualifications and graduation and faculty and general rules,” Dr Lazenby said.  It will also entail the optimisation of PeopleSoftCampus (the Enterprise Resource Planning system).

“Through this automation, I would also like to get the university’s student administration to such a level that academic staff can focus their energy on teaching and research and student administration staff can focus more on quality assurance,” said Dr Lazenby.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept