Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2018 | Story Leonie Bolleurs | Photo Barend Nagel
Marcelle Vermeulen
Marcele Vermeulen, a graduate from the Department of Plant Sciences, explores possible threats to crop production; contributing to food security in South Africa.

Global food security is currently threatened both by climate change and the low diversity of crops relied on by humankind to feed a growing world population. Marcele Vermeulen, a graduate in the Department of Plant Sciences who will receive her PhD at the December graduation ceremonies at the University of the Free State (UFS), is part of a team that is working hard to add to the diversity of staple foods in South Africa.

In the drive to focus on alternative crops, Marcele is researching the crop, Amaranthus cruentus, (grain amaranth). It is more tolerant to environmental stress for large-scale production, thereby also diversifying staple crops.

Relatively new development

“Amaranthus cruentus is an excellent candidate due to its high nutritional value and tolerance to drought and high temperatures. It can be mixed with conventional maize meal, to increase the protein intake of its consumers,” said Marcele.

The production of A. cruentus as a grain crop in South Africa is a relatively new development.

In her research, exploring the possible threats to crop production and paying particular attention to dominant plant pathogens in the Amaranthus cruentus, Marcele found a correlation between fungal pathogens and insect pests. 

Insect pests can influence plant diseases

Although reports on fungal pathogens and pests specific to A. cruentus are limited to and information for South Africa is limited to this study, there is a possibility that by controlling insect pests such as weevils, one might also be able to control fungal pathogens of Amaranthus cruentus.

Marcele believes that control of weevil pests should thus be the focus of future pest and pathogen management strategies and breeding programmes in A. cruentus.  

“Knowledge gained in my thesis will hopefully aid in the development of future cultivation practices, integrated pest/pathogen management programmes, as well as for the registration of crop protection products for A. cruentus,” Marcele added.

Research Contributes to Food Security from University of the Free State on Vimeo.

News Archive

Death may come in adorable little packages
2015-03-23

The main host of the Lassa virus is the Natal Mulimammate mouse.

Photo: Supplied

Postdoctoral researcher, Abdon Atangana, of the Institute for Groundwater Studies at the university recently published an article online about the Lassa Haemorrhagic fever in the Natural Computing Applications Forum. In addition to the terminal transmissible sickness recognised as Ebola haemorrhagic fever, there is another strain called Lassa haemorrhagic fever.

The disease is classified under the arenaviridae virus family. The first outbreaks of the disease were observed in Nigeria, Liberia, Sierra Leone, and the Central African Republic. However, it was first described in 1969 in the town of Lassa, in Borno State, Nigeria.

The main host of the Lassa virus is the Natal Mulimammate mouse, an animal indigenous to most of Sub-Saharan Africa. The contamination in humans characteristically takes place through exposure to animal excrement through the respiratory or gastrointestinal tracts.

Mouthfuls of air containing tiny particle of infective material are understood to be the most noteworthy way of exposure. It is also possible to acquire the infection through broken skin or mucous membranes that are directly exposed to the infective material.

“The aim of my research was to propose a novel mathematical equation used to describe the spread of the illness amongst pregnant women in West Africa. To achieve this, I used my newly-proposed derivative with fractional order called beta-derivative. Since none of the commonly used integral transform could be used to derive the solution of the proposed model, I proposed a new integral transform called Atangana-Transform, and used it, together with some iterative technique, to derive the solution of the model.

“My numerical simulations show that the disease is as deadly amongst pregnant women as Ebola,” Abdon said.

Abdon’s research was submitted to one of Springer’s top-tier journals with an impact factor 1.78. The paper was accepted and published February 2015.

Read more about Abdon’s research.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept