Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

Funding of R8.7million for skills development in manufacturing and teacher training signed over to UFS
2017-06-19

Description: MerSETA funding Tags: MerSETA funding



The MerSETA (Skills and Training Authority for Manufacturing, Engineering and Related Industries) signed a Memorandum of Agreement (MOA) with the University of the Free State (UFS) for a grant of approximately R8.7million on 14 June 2017, which will be disbursed over a three-year period. 

UFS seeks to bridge the skills gap
As a response to the need for skills development in the manufacturing, engineering and related industries sector, and as an institution of higher learning optimally placed to serve the population of central South Africa, the UFS proposed a partnership with MerSETA to address challenges in the sector. The interventions that MerSETA will fund include training for 600 vocational teachers, research and development of a green building mechanical index, in-service training for 60 IT Teachers and microbotics classes for 100 students.

The CEO of MerSETA, and UFS alumnus Dr Raymond Patel, said the funding for rare skills such as in science and engineering are of great importance for the country. The ability to train teachers and to upskill them will yield great results for the economy as a whole. Rector and Vice-Chancellor Prof Francis Petersen said the UFS partnership with SETAs and with MerSETA in particular should be mutually beneficial, and went a long way in integrating first-generation university students to be better-prepared for university studies.

Collaboration and support key within university departments
The delegates visited the Departments of Education and Engineering Sciences on the Bloemfontein Campus, where they met project leaders Louis Lagrange from the Faculty of Natural and Agricultural Sciences, Dr Nixon Teis, Faculty of Education, and Pat Lamusse, Institutional Advancement. Present at the signing ceremony were members of the Rectorate, the Acting Dean of the faculty of Education, Prof Loyiso Jita, and Dean of the Faculty of Natural and Agricultural Sciences, Prof Danie Vermeulen, as well as researchers who will be working on the green building mechanical use index and other MerSETA representatives.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept