Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 December 2018 | Story Leonie Bolleurs | Photo Leonie Bolleurs
One step closer to treat HIV/Aids
Nthabiseng Mokoena is working on an article based on her research about drug development in infection models, which will be published under the Research Chair in Pathogenic Yeasts.

South Africa has the biggest and most high-profile HIV epidemic in the world, with an estimated seven million people living with HIV in 2015. In the same year, there were 380 000 new infections while 180 000 South Africans died from AIDS-related illnesses. 

Invasive fungal infection, common in certain groups of patients with immune deficits, is a serious driver of global mortality in the context of the global HIV pandemic. 

“Despite a major scientific effort to find new cures and vaccines for HIV, hundreds of thousands of HIV-infected individuals continue to die on a yearly basis from secondary fungal infection. Intensive research needs to be done to help reduce the unacceptably high mortality rate due to the infection in South Africa,” said Nthabiseng Mokoena.

Mokoena is a master’s student of Prof Carlien Pohl-Albertyn, who is heading the Research Chair in Pathogenic Yeasts in the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS). 

She received her master’s degree at the December graduations of the UFS. Her thesis is titled: Caenorhabditis elegans as a model for Candida albicans-Pseudomonas aeruginosa co-infection and infection induced prostaglandin production.

Research Chair in Pathogenic Yeasts

Earlier this year, the National Research Foundation approved the Research Chair in Pathogenic Yeasts. One of the projects of the group of scientists in this chair include a study of the interaction between the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa in different hosts, using a variety of infection models.

In her research, Mokoena studied the response of infectious pathogens such as yeasts and bacteria, using a nematode (little roundworm) as an infection model to mimic the host environment. Nematodes have a number of traits similar to humans. It is thus a good alternative for humans as infection models, as it is unethical to use the latter.

Nematodes have a number of advantages, including its low cost and fast reproduction and growth. 

Mokoena monitored the survival of the nematodes to see how infectious the pathogens are, especially in combination with each other. 

Role of infection model for drug development

When these two pathogens were studied in a lab (in vitro), it was found that they can inhibit each other, but after studying them in the infection model (in vivo), Mokoena showed that these pathogens are more destructive together. 

This finding has a huge impact for the pharmaceutical industry, as it can provide information on how drugs need to be designed in order to fight infectious diseases where multiple organisms cause co-infections.

Many pathogens are resistant to drugs. Through this model, drugs can be tested in a space similar to the human body. Seeing how pathogens react to drugs within a space similar to the human body, can contribute to drug development. 

Not only are drugs developed more effectively through this model, it is also less expensive. 

It is the first time that the combination of the yeast, Candida albicans and the bacterium, Pseudomonas aeruginosa, is being experimented on in this model. 

News Archive

New digital planetarium first of its kind for Sub-Saharan Africa
2013-10-10

Mr Andrew Johnson, Sky-Skan engineer, explains how the dataprojector of the new digital planetarium functions.
10 October 2013

The University of the Free State (UFS) is the first in the world to boast a modern digital planetarium which was erected within an existing observatory.

It is also the first planetarium of its kind for Sub-Saharan Africa.

“What makes the project unique is the fact that we convert the existing observatory structure into a modern digital planetarium. It hasn’t been done anywhere else,” says Andrew Johnson, engineer at Sky-Skan, the company supplying the equipment and also installing it.

Andrew has worked on similar projects, with his company installing digital planetariums around the world.

What makes the planetarium so special is the fact that it offers visitors an inclusive experience.

“Previously visitors could only watch projected stars and constellations, but with the digital planetarium they can now experience a journey through space which feels very close to reality.”

Andrew points out that, apart from stargazing and travelling through space, the digital planetarium allows the audience to visit planets, explore the secrets of the oceans or even organs in the human body.

The planetarium will also be used for concerts, state-of-the-art presentations, theatre productions, as well as meetings, conferences and exhibitions.

The auditorium can seat approximately 90 adults or 120 children.

The digital dome that was recently fitted into the existing observatory structure, is a 12-metre seamless aluminium screen complemented by a powerful surround-sound system and multiple data projectors from Sky-Skan. This results in an immersive experience of the digital universe, as well as the recreation of the macro and micro cosmos an a variety of other environments.

The planetarium will be officially opened on Friday 1 November 2013 by Derek Hanekom, Minister of Science and Technology. Prof Matie Hoffman from the Department of Physics at the UFS is delighted at this visit from Minister Hanekom.

“This recognition and national interest demonstrates the importance and contribution of the first digital planetarium in Sub-Saharan Africa to science and astronomy.  It is also evidence that a facility like this is important for the training of the next generation of scientists.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept