Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 December 2018 | Story Thabo Kessah | Photo Thabo Kessah
Dr Martin Mandew welcoming ceremony
Prof Francis Petersen, Dr Martin Mandew, UFS Council Chairperson Willem Louw, and Prof Prakash Naidoo, Vice-Rector: Operations.

The University of the Free State Qwaqwa Campus and the broader community gave the new Principal, Dr Martin Mandew, a warm welcome on Thursday 22 November 2018. In attendance were representatives from different stakeholders, ranging from the Thabo Mofutsanyana Education District, the UFS Council, to the Student Representative Council (SRC) who challenged Dr Mandew to take the campus to greater heights.

In welcoming Dr Mandew, the Rector and Vice-Chancellor, Prof Francis Petersen, highlighted recent campus achievements, including increased enrolment for both undergraduate and postgraduate students. “There has been a tremendous growth in our enrolment for both under- and postgraduate students. First-time undergraduate students grew by 124% from 2015 to 2018 – from 1 027 to 2 300 students. Regarding postgraduate students, we grew by 68% – from 329 to 551 in the same period of time. In addition, the University Staff Doctorate Project (USDP) that seeks to increase the number of academics with PhDs, is already unfolding. This programme will see six academics pursuing doctorate degrees in natural sciences, social sciences, the humanities, economic management sciences, and education, but will be focusing on multidisciplinary research on mountains or mountain communities. This Afromontane Research Unit (ARU) project is performed in collaboration with three American universities – the Appalachian State University, the Colorado State University, and the University of Montana,” he said.

“We have also seen increased research output that came partly as a result of our ARU collaborating with the United Nations University and the University of Tokyo’s Graduate School of Frontier Sciences in Japan. This partnership is aimed at developing the campus to be a sustainability hub of research and education, focusing on mountain and rural regions in South Africa,” he added.

Prof Petersen also acknowledged the role Dr Mandew was already playing in “broadening the reach of community engagement, integrating all efforts by different faculties and departments into one sustainable programme and integrating commuting or day students into university life”.

Speaking on behalf of the Qwaqwa Campus Branch of the National Education, Health and Allied Workers’ Union (NEHAWU), Deputy Chairperson, Motlogelwa Moema, highlighted the need for the new Campus Principal to always listen to the workers. “Workers themselves will tell you about their issues and you will not read about them in some minutes or written notes from somewhere,” he said. Representing UVPERSU was Grey Magaiza, who extended a hand of cooperation to Dr Mandew. “We are prepared to share your agenda of developing this campus with you, and you can count on us,” he said.

In his response, Dr Mandew also extended a hand of cooperation to those willing to see the campus becoming an institution of choice. “It has to be emphasised that this event is not about me, but about our biggest stakeholders – our students – and how we can advance our campus together and make it better. We must make this campus the best of its size in the whole of South Africa,” he said.

His Majesty Morena E Mohono Moremoholo Mopeli from the Bakoena Ba Mopeli Traditional Council welcomed Dr Mandew with a Basotho blanket, a rod, and a hat – symbols of the highest level and warmest welcome.


News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept