Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 December 2018 | Story Thabo Kessah | Photo Thabo Kessah
Charlotte Maxeke
Residence students preparing old tyres to use in new playing swings.

The name Charlotte Maxeke is, since time immemorial, associated with ‘hope’ for the downtrodden Black majority. And the name Fulufhelo means ‘hope’ in Tshivenda, the language spoken mainly in Limpopo, her birth province. She was the first black South African woman to earn a degree, a Bachelor of Science from the Wilberforce University in the Unites States of America in 1901.

Khayelisha and Khayelethu also project a very high expectation of ‘hope’. Considering our painful past dominated by the 1913 Land Act, the former literally means ‘our new home’, whilst the latter means ‘our home’.

Fast forward to 2018 at the University of the Free State’s Qwaqwa Campus. These are the names of student residences that brought hope to the needy when they collaborated with Community Engagement to give back to their communities.

“The need to give back was sparked by our encounter with needy students on campus. We then thought that if we could do the little for our fellow students who are part of the No Student Hungry (NSH) campaign, we could actually extend this to those who are even worse off,” said Beyoncé Matsoso, Prime of Charlotte Maxeke and Residence for first year students.

“Taking time out to give toys, play with the kids on the swings we erected for them, helping them with their laundry and giving them fruit and food bought from our own pockets gave us a lot of satisfaction,” said Beyoncé, a final year BA Psychology and Languages student.

Acknowledging the role played by Residence Head, Makeresemese Mokhatla, in the whole exercise was Sikolethu Dodo, Prime of Khayelitsha / Khayelethu Residence.

“Having had a dialogue on how we can make other people’s lives better with our Residence Head Makeresemese Mokhatla and Mme Matsoso from Community Engagement led to this initiative. Some of us will be going out to the world of work soon and this has equipped us with necessary skills like compassion,” said Sikolethu, a final year BAdmin student.

The centres visited were the Itsoseng housing disabled children as well as the Team Spirit Hospice.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept