Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2018 | Story Charlene Stanley
Advising pic
Aligning your study field with your career aspirations can be challenging. Academic advising provides solutions.

Over the past few years, institutions of higher learning have experienced an explosive growth in student numbers. Student volumes are often more than campus administrations can effectively deal with. On the students’ side, coming to grips with and transitioning into university and navigating the academic-content processes and technology can be an overwhelming experience – especially for so-called ‘first-generation’ students. Many students often have fixed career dreams, but not a clear knowledge of what they need to get there. This is where academic advising can be a guiding light.

 How Academic Advising works

 Academic advising fosters the development, engagement, and support of students and provides guidance towards academic, personal, and career success. “Through academic advising we basically make sure that students’ career prospects align with their academic programme,” explains Prof Francois Strydom, Senior Director of the Centre for Teaching and Learning (CTL), which houses the UFS Academic Advisement Unit. It is also not only the academic needs of students that are addressed. He describes advising as a ‘hub of the wheel’ that connects students to different departments and services across campus, depending on their needs.

Evolution of Academic Advising

Prof Strydom explains that some type of advising has always existed on university campuses in the form of career counsellors and faculty managers assisting with student queries. But with many institutions virtually doubling in size over the past few years, many students started ‘falling through the cracks’. “There’s been a great need to professionalise this service and to have a clearly defined structure in place with dedicated advisers to assist students quickly and efficiently,” he says. The UFS academic advising team has been playing a leading role in securing a seven-institution collaborative University Capacity Development Grant (UCDG) in 2017 to professionalise the practice in South Africa. 

“We focus on communicating with and serving Kovsie students in ways that really speaks to them, for instance through the Academic Advising Facebook page, email (advising@ufs.ac.za), the electronic magazine (Kovsie Advice), plus face-to-face interactions in the faculties, the Sasol Library in Bloemfontein, and in the TK Mopeli Building on our Qwaqwa Campus,” says Gugu Tiroyabone, who heads the Academic Advisement Unit within CTL. She emphasises that advising is a shared responsibility. “Advisers can never decide for the students but are there to assist them to make informed decisions themselves.”

Data collected from the 1 456 students who utilised continuous academic advising services at the UFS during 2017, has irrefutably shown that these students have a higher probability of passing most of their modules with over 70% – a clear indication that academic advising really works.

Paving a professional path for advisers

Drawing on eight years of ongoing development in academic advising, the UFS piloted the first nationally contextualised Short Learning Programme for advisers in order to guide the development of this practice.

The pilot of the fully accredited Academic Advising Professional Development (AAPD) Short Learning Programme (SLP), which will be presented twice a year, was presented by the CTL early in October 2018 and represented all seven institutions forming part of the UCDG collaboration (UFS, NMU, Wits, UCT, DUT, MUT, and UP).

With the SLP’s ultimate goal to build and cultivate the practice and its practitioners, this national initiative is likely to be one of the enablers for the development and enhancement of student success in South Africa.

 

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept