Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 December 2018 | Story Igno van Niekerk | Photo Igno van Niekerk
Insects on the menu
Beetle juice and bug flour; Drs Ismari van der Merwe and Cariena Bothma are researching the possibility of a high-protein diet consisting of insect ingredients.

You’ve just had a tasty milkshake made from grasshopper juice, now for a light snack. Your choice: Salty cricket cookies or a deep-fried ant delight?

One of these days the above delicatessen may just find its way to your local restaurant menu if Drs Ismari van der Merwe, Cariena Bothma, both lecturers in the Department of Consumer Science, and their enthusiastic team of students have their way. Insects as food are rich in protein, often tasty, and having them on a menu is not as far-fetched as you may think. After all, we know what culinary delights mopani worms – and yes – cooked land snails (enjoyed as escargots) have become over the years.

 

Cricket smackerals

 

When Dr Van der Mewe explains the benefits of her team’s vision for a high-protein diet consisting of insect ingredients (cricket flour as an example), one becomes aware that this could be the solution to a myriad of problems. Insects eat much less than our regular menu items such as cows (beef), sheep (lamb chops) or pigs (pork). Insects as an alternative diet will reduce the negative impact that larger animals have on the environment and greenhouse gases. Insects have faster life cycles and it takes less effort and space to breed and feed them.

“Ugh! Ick! Disgusting,” you might think. But picture the taste lab where volunteers are given regular chocolate cookies made with regular flour, and then asked to compare it with cookies made from cricket flour. Dr van der Merwe assures me that most people will be unable to distinguish between them, often even preferring the cricket smackerals.

 

Heathy alternative

 

Insect breakfast cereals, granola, and snack food is a real and viable solution for the developing world where food is scarce, and hunger is a real issue. But is it healthy? Dr Van der Merwe assures me that during the process of ‘bug to flour’, they are addressing the main concern: micro-organisms that might be detrimental to health. Once the insects or processed insect by-products arrive on your plate, it’s a healthy high-protein alternative that might become the next revolutionary diet.

So, stand aside Atkins, beware Banting, and be gone Gluten-free – there is a new diet on its way to the menu. Brace yourself for beetle juice and bug flour: a diet full of proteins, fat, energy, and essential amino acids. 

 

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept