Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 February 2018 Photo Bonolo Nkoane
First Sesotho soundtrack for fulldome film launched at Naval Hill Planetarium
Tshireletso Nkoane, best known for her television roles in the drama series, Tshisa, the comedy series, Moferefere Lenyalong, as well as the miniseries, Naledi.

In December, the Naval Hill Planetarium used the voice of a well-known South African actress for yet another trailblazer: the first Sesotho soundtrack for a full-dome film.

“It is important for our children to become interested in science and astronomy through exposure to good language use in their mother tongue from an early age, so that we can still make a sound contribution to these fields in the future,” said Prof Matie Hoffman from the Department of Physics at the University of the Free State.

Space Shapes, a child-friendly fulldome film by the Ott Planetarium at the Weber State University in Utah in the US, was translated into Sesotho as Dibopeho tsa Sepakapakeng by Khantlapane Selina Ketla and Dr Andries Hoffman, following last year’s release of the short film by the Naval Hill Planetarium as Ruimtevorms in Afrikaans. The film, created by participants of the 2010 Blender Production Workshop in Utah, takes young audiences on a journey to explore the different shapes found in space.

The voice artist, Tshireletso Nkoane, a star in her own right, is best-known for her television roles in the drama series, Tshisa, the comedy series, Moferefere Lenyalong, as well as the miniseries, Naledi. She has several theatre and radio credits to her name, and also boasts a diploma in Electrical Engineering.

The premiere of this Sesotho trailblazer, as well as the CosmoQuest and Ward Beecher Planetarium’s English fulldome film, Cosmic Castaways, will take place at the Naval Hill Planetarium on Saturday 17 February 2018 at 17:30. Cosmic Castaways is an exciting work that reaches out to places where there are no constellations; where there are still isolated stars to be found in the voids between the galaxies.

Tickets for this double premiere, as well as for the weekly Saturday 17:30 shows, are available from Computicket – just search under ‘planetarium’ on the Computicket website or visit Checkers.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept