Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 February 2018 Photo Supplied
UFS researcher programme aids pupils with ADHD and dyslexia
Dr Carol Goldfus

Many years ago, as a secondary school teacher, Dr Carol Goldfus from the University of the Free State’s Unit for Language Facilitation and Empowerment, realised that reading comprehension ought to be the focal point of teaching. She came to the conclusion that many adolescents were unable to gain fluency in English as a foreign language despite many years of study and that there were those who struggled with the foreign language. With her postgraduate specialisation in neuroscience and the merging of neuroscience and education, she developed a reading comprehension intervention programme.

Reading remains important

Contrary to what we believe, the world is not more visual – but rather more technical, Dr Goldfus explains, and reading with understanding remains of utmost importance in the twenty first century. “Literacy does not only mean reading, but also thinking fast,” she says, “with the ability to sift through the mass of available information. Without reading proficiency, people cannot succeed in a world with so much information. In fact, the ability to identify what is important, and what not, is more crucial than before.”

““It is our duty to give
pupils worldwide the ability
to cope with a sophisticated,
alienated, and technological world.”
—Dr Carol Goldfus
ULFE

One brain, many languages

Reading comprehension is the epicentre of Dr Goldfus’s approach to learning, and her intervention programme may benefit any pupil who is unable to cope with the demands of the academic setting, and can be applied to any language. These pupils include children from seventh to twelth grade (12 to 18 years of age) who read without comprehension, have dyslexia, dyscalculia (problems with maths), and ADHD (Attention Deficit with or without Hyperactivity), or have dropped out of an education setting. “My intervention programme is in English as a Foreign Langue (EFL) but is not static, since it is based on principles from neuroscience and linguistics that are placed in the world of education. Although it is for EFL, it has a backwash effect on mother-tongue reading competence as well. Each programme comprises certain core principles, like developing self-esteem, monitoring comprehension and learning, and developing long-term memory storage. Without remembering, there is no learning.”

No one wants to fail

Dr Goldfus feels that it is our duty to give pupils worldwide the ability to cope with a sophisticated, alienated, and technological world. “My goal is to turn failure into excellence through an understanding of how the brain works. That is what the programme and my research can offer: creating a brain that can support learning where each pupil can fulfil his or her potential.”

Her work is so noteworthy, that Dr Goldfus received a Blue Skies Grand from the National Research Foundation of South Africa for her research: Graphomotor synchronisation to musical stimulation as a diagnostic tool for dyslexia. This proposed interdisciplinary research addresses dyslexia, a language-related disability, through the language of music and encompasses three disciplines: music cognition, physics and education.

News Archive

Plant scientist, Prof Zakkie Pretorius, contributes to food security with his research
2014-08-26

 
Many plant pathologists spend entire careers trying to outwit microbes, in particular those that cause diseases of economically important plants. In some cases control measures are simple and successful. In others, disease management remains an ongoing battle. 

Prof Zakkie Pretorius, Professor in the Department of Plant Sciences, works on a group of wheat diseases known as rusts. The name is derived from the powdery and brown appearance of these fungi.

Over the course of history wheat rusts have undergone what are notoriously known as boom and bust cycles. During boom periods the disease is controlled by means of heritable resistance in a variety, resulting in good yields. This resistance, though, is more often than not busted by the appearance of new rust strains with novel parasitic abilities. For resistance to remain durable, complex combinations of effective genes and chromosome regions have to be added in a single wheat variety.

In recent years, Prof Pretorius has focused on identifying and characterising resistance sources that have the potential to endure the onslaught of new rust races. His group has made great progress in the control of stripe rust – where several chromosome regions conditioning effective resistance have been identified.

Dr Renée Prins of CenGen and an affiliated UFS staff member, developed molecular markers for these resistance sources. These are now routinely applied in wheat breeding programmes in South Africa. In addition, Prof Pretorius collaborates with several countries to transfer newly discovered stem rust resistance genes to wheat, and in characterising effective sources of resistance in existing wheat collections.

His work is closely supported by research conducted by UFS colleagues, students and other partners on the genetics of the various wheat rust pathogens. These studies aim to answer questions about:
• the origin and relatedness of rust races,
• their highly successful parasitic ability, and
• their adaptation in different environments.

The UFS wheat rust programme adds significantly to the development of resistant varieties and thus more sustainable production of this important crop. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept