Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 February 2018 Photo Supplied
UFS researcher programme aids pupils with ADHD and dyslexia
Dr Carol Goldfus

Many years ago, as a secondary school teacher, Dr Carol Goldfus from the University of the Free State’s Unit for Language Facilitation and Empowerment, realised that reading comprehension ought to be the focal point of teaching. She came to the conclusion that many adolescents were unable to gain fluency in English as a foreign language despite many years of study and that there were those who struggled with the foreign language. With her postgraduate specialisation in neuroscience and the merging of neuroscience and education, she developed a reading comprehension intervention programme.

Reading remains important

Contrary to what we believe, the world is not more visual – but rather more technical, Dr Goldfus explains, and reading with understanding remains of utmost importance in the twenty first century. “Literacy does not only mean reading, but also thinking fast,” she says, “with the ability to sift through the mass of available information. Without reading proficiency, people cannot succeed in a world with so much information. In fact, the ability to identify what is important, and what not, is more crucial than before.”

““It is our duty to give
pupils worldwide the ability
to cope with a sophisticated,
alienated, and technological world.”
—Dr Carol Goldfus
ULFE

One brain, many languages

Reading comprehension is the epicentre of Dr Goldfus’s approach to learning, and her intervention programme may benefit any pupil who is unable to cope with the demands of the academic setting, and can be applied to any language. These pupils include children from seventh to twelth grade (12 to 18 years of age) who read without comprehension, have dyslexia, dyscalculia (problems with maths), and ADHD (Attention Deficit with or without Hyperactivity), or have dropped out of an education setting. “My intervention programme is in English as a Foreign Langue (EFL) but is not static, since it is based on principles from neuroscience and linguistics that are placed in the world of education. Although it is for EFL, it has a backwash effect on mother-tongue reading competence as well. Each programme comprises certain core principles, like developing self-esteem, monitoring comprehension and learning, and developing long-term memory storage. Without remembering, there is no learning.”

No one wants to fail

Dr Goldfus feels that it is our duty to give pupils worldwide the ability to cope with a sophisticated, alienated, and technological world. “My goal is to turn failure into excellence through an understanding of how the brain works. That is what the programme and my research can offer: creating a brain that can support learning where each pupil can fulfil his or her potential.”

Her work is so noteworthy, that Dr Goldfus received a Blue Skies Grand from the National Research Foundation of South Africa for her research: Graphomotor synchronisation to musical stimulation as a diagnostic tool for dyslexia. This proposed interdisciplinary research addresses dyslexia, a language-related disability, through the language of music and encompasses three disciplines: music cognition, physics and education.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept