Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 January 2018 Photo Charl Devenish
ISG’s Sarah Frank researches impact of historic conflicts on society
Dr Sarah Frank, postdoctoral researcher at the ISG.

History has an interesting connection with society, as we all grow up learning about our country’s history and studying it at school. However, what we learn at school is often a glorified version of events. It can sometimes be challenging for historians to come to grips with the most accurate version of a particular ‘history’. 

Dr Sarah Frank is a postdoctoral research fellow with the International Studies Group (ISG), who fell in love with history at a young age. She says, "I was very lucky to have outstanding history teachers at school who fostered my interest and curiosity." Early on, though, she experienced disappointment. "In school, there was a series of biographies of American leaders and presidents written for children. I remember feeling betrayed when I subsequently learnt that the biographies had not presented a well-balanced narrative. That is when I learnt that history could be debated and interpreted—and it is full of nuances."

Interested in conflict shaping lives

Dr Frank was particularly intrigued by the social and political history of the Second World War (WWII). She describes her interest in this way: "The Second World War looms in popular memory as much as in the historical one. I am interested in how conflict shaped people’s lives during and after the war." Being a speaker of French helped her to focus on the impact of the war on France, and having spent a few years living in West Africa, confronted with the lingering colonial past, she decided to home in on the French empire, with particular attention to colonies, captivity, and the repercussions of war experiences when soldiers returned home. Additionally, she explores the themes of decolonisation, the roots of independence movements, and the lingering ties between the former imperial powers and former colonies.

Although she grew up near Boston, Massachusetts, studied for her master's in Dublin, and has lived in far-flung places such as Guinea (while serving with the Peace Corps) and Dakar, Dr Frank says, "I have lived in a lot of places, but Bloemfontein is definitely one of my favourites!"

“I was very lucky to have outstanding
history teachers at school who
fostered my interest and curiosity.”
Dr Sarah Frank

Colonial POWs her new focus

Currently, Dr Frank is writing a book based on her PhD research, which delved into the experiences of approximately 85 000 soldiers in captivity from across the French Empire, who fought in France from 1939-1940. The Germans decided to racially separate the colonial prisoners of war (CPOWs), taking white prisoners to Germany and leaving the colonial prisoners in camps across occupied France. This created opportunities for colonial prisoners to interact with the French civilians, something which rarely occurred in the strict hierarchical colonial regime. Perhaps surprisingly, considering the racism of both the French and German regimes, Colonial prisoners fared better in captivity in France than their French counterparts did in Germany.

Dr Frank's next project will trace the return of the African soldiers who fought during the Second World War. She seeks to understand what happened to them as well as their families when they returned, and to see if their experience actually impacted the growing independence movements which arose following 
WWII.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept