Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 July 2018 Photo Supplied
Five PhDs for Chemistry group at June 2018 graduation
Pictured here are the Department of Chemistry graduates and their promoters/ co-promoters. From the left are: Dr Alebel Belay, Dr Dumisani Kama, Dr Orbett Alexander, Dr Pennie Mokolokolo and Dr Pule Molokoane; back: Prof Andreas Roodt, Dr Marietjie Schutte-Smith, Dr Alice Brink and Dr Johan Venter. Prof Roodt was either promoter or co-promoter to four of the graduates, while Prof Deon Visser (promoter; not present) and Dr Alice Brink (co-promoter) supervised Dr Orbett Alexander.

What is the common factor among metal extraction from mineral reserves, the treatment of cancer, and nanomaterials in cellular phones? The answer is Chemistry. 

For the first time since the Department of Chemistry at the University of the Free State (UFS) was founded some 114 years ago, a single research group in Chemistry delivered five PhD students.  This was achieved in the division of Inorganic Chemistry at the 2018 Winter graduation ceremony by the group under leadership of Prof Andreas Roodt and senior colleagues, Drs Johan Venter, Alice Brink and Marietjie Schutte-Smith. Prof Deon Visser, a former group member, was promoter for one of the students. 

The five graduandi are Drs Alebel Belay, Dumisani Kama, Pennie Mokolokolo, Pule Molokoane and Orbett Alexander. Their research involved the use of special chemical groups which are attached to metals such as platinum, rhodium, niobium, technetium and rhenium to create compounds with special pre-selected properties. 

The combination of these special groups with the metals allow many different potential applications – all adding value. These include metal extraction from South Africa’s rich mineral reserves, the treatment of diseases such as cancer, the diagnosis of heart and brain damages, nanomaterials which are used in cellular phones, catalysts to produce cleaner petrol, special light devices which by themselves ‘glow in the dark’, and more. 

Three of the students completed part of their research in Switzerland.

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept