Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2018 Photo Aden Ardenrich from Pexels
Is there a pollution solution
To make one cotton T-shirt up to 2 700 litres are used – that is two-and-a-half years of drinking water for one person.

Dr Cindé Greyling, a UFS DiMTEC (Disaster Management Training and Education Centre for Africa) alumni, studied drought mitigation – with a strong focus on communicating important water-saving information. 

Coming out of the closet

“We often point to the mining, agriculture, and energy sectors as water pollution culprits, which they are, but what about closer to home?” Dr Greyling asks. It is good if you take short showers, harvest rainwater, and are conscious about closing taps, but, she explains, there is a big problem hiding in your closet. Textiles. “It is difficult to put an exact number or ranking to it, but the textile industry could easily be in the top 10 water polluters. The cotton plant requires a lot of water and is one of the most chemically dependent crops in the world. Long before manufacturing starts, water is already at stake.” Not that polyester, or polyester blends are much better – when washed, thousands of microplastic fibers are released that eventually end up in our water sources and the oceans.

To dye for
“Most dyes used for textiles are also heavy water pollutants,” she explains. “And since we’ve developed a taste for cheap, mass-produced clothing, the production sites take strain – putting the community and environment at risk. When you wash these cheaply made garments, the same toxic dye is often visibly released.” The fashion industry is regularly criticised by animal activists for their insidious labour practices. But maybe it is time to help limit their environmental impact too.  

One in, one out
“We must unlearn our fashion gluttony. There is no pride in having a wardrobe full of clothes that you do not wear. Buy less, buy better quality, and care for your clothes so that you don’t have to replace them that often. To make one cotton T-shirt, up to 2 700 liters is used – that is 2 ½ years of drinking water for one person. My household applies a ‘one-in-one-out’ rule. You can only buy, for example, a new pair of denim jeans, if you take an old pair out that you either donate or repurpose. It works very well – you think twice about purchasing.”

A helping hand
Dr Greyling thinks that beside individual efforts, the UFS community can contribute a lot toward reducing textile water pollution, such as opening a pre-used clothing bank on campus. “Students are very influential and can easily create a ‘cool to re-use’ fashion trend, even if just locally. Also, research students can further explore and develop textile alternatives like bamboo, hemp, or a more water-friendly synthetic.” 

News Archive

Researcher works on finding practical solutions to plant diseases for farmers
2017-10-03

 Description: Lisa read more Tags: Plant disease, Lisa Ann Rothman, Department of Plant Sciences, 3 Minute Thesis,  

Lisa Ann Rothman, researcher in the Department of
Plant Sciences.
Photo: Supplied

 


Plant disease epidemics have wreaked havoc for many centuries. Notable examples are the devastating Great Famine in Ireland and the Witches of Salem. 

Plant diseases form, due to a reaction to suitable environments, when a susceptible host and viable disease causal organism are present. If the interactions between these three factors are monitored over space and time the outcome has the ability to form a “simplification of reality”. This is more formally known as a plant disease model. Lisa Ann Rothman, a researcher in the Department of Plant Sciences at the University of the Free State (UFS) participated in the Three Minute Thesis competition in which she presented on Using mathematical models to predict plant disease. 

Forecast models provide promise fighting plant diseases
The aim of Lisa’s study is to identify weather and other driving variables that interact with critical host growth stages and pathogens to favour disease incidence and severity, for future development of risk forecasting models. Lisa used the disease, sorghum grain mold, caused by colonisation of Fusarium graminearum, and concomitant mycotoxin production to illustrate the modelling process. 

She said: “Internationally, forecasting models for many plant diseases exist and are applied commercially for important agricultural crops. The application of these models in a South African context has been limited, but provides promise for effective disease intervention technologies.

Contributing to the betterment of society
“My BSc Agric (Plant Pathology) undergraduate degree was completed in combination with Agrometeorology, agricultural weather science. I knew that I wanted to combine my love for weather science with my primary interest, Plant Pathology. 
“My research is built on the statement of Lord Kelvin: ‘To measure is to know and if you cannot measure it, you cannot improve it’. Measuring the changes in plant disease epidemics allows for these models to be developed and ultimately provide practical solutions for our farmers. Plant disease prediction models have the potential ability to reduce the risk for famers, allowing the timing of fungicide applications to be optimised, thus protecting their yields and ultimately their livelihoods. I am continuing my studies in agriculture in the hope of contributing to the betterment of society.” 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept