Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2018 Photo Aden Ardenrich from Pexels
Is there a pollution solution
To make one cotton T-shirt up to 2 700 litres are used – that is two-and-a-half years of drinking water for one person.

Dr Cindé Greyling, a UFS DiMTEC (Disaster Management Training and Education Centre for Africa) alumni, studied drought mitigation – with a strong focus on communicating important water-saving information. 

Coming out of the closet

“We often point to the mining, agriculture, and energy sectors as water pollution culprits, which they are, but what about closer to home?” Dr Greyling asks. It is good if you take short showers, harvest rainwater, and are conscious about closing taps, but, she explains, there is a big problem hiding in your closet. Textiles. “It is difficult to put an exact number or ranking to it, but the textile industry could easily be in the top 10 water polluters. The cotton plant requires a lot of water and is one of the most chemically dependent crops in the world. Long before manufacturing starts, water is already at stake.” Not that polyester, or polyester blends are much better – when washed, thousands of microplastic fibers are released that eventually end up in our water sources and the oceans.

To dye for
“Most dyes used for textiles are also heavy water pollutants,” she explains. “And since we’ve developed a taste for cheap, mass-produced clothing, the production sites take strain – putting the community and environment at risk. When you wash these cheaply made garments, the same toxic dye is often visibly released.” The fashion industry is regularly criticised by animal activists for their insidious labour practices. But maybe it is time to help limit their environmental impact too.  

One in, one out
“We must unlearn our fashion gluttony. There is no pride in having a wardrobe full of clothes that you do not wear. Buy less, buy better quality, and care for your clothes so that you don’t have to replace them that often. To make one cotton T-shirt, up to 2 700 liters is used – that is 2 ½ years of drinking water for one person. My household applies a ‘one-in-one-out’ rule. You can only buy, for example, a new pair of denim jeans, if you take an old pair out that you either donate or repurpose. It works very well – you think twice about purchasing.”

A helping hand
Dr Greyling thinks that beside individual efforts, the UFS community can contribute a lot toward reducing textile water pollution, such as opening a pre-used clothing bank on campus. “Students are very influential and can easily create a ‘cool to re-use’ fashion trend, even if just locally. Also, research students can further explore and develop textile alternatives like bamboo, hemp, or a more water-friendly synthetic.” 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept