Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 March 2018 Photo Aden Ardenrich from Pexels
Is there a pollution solution
To make one cotton T-shirt up to 2 700 litres are used – that is two-and-a-half years of drinking water for one person.

Dr Cindé Greyling, a UFS DiMTEC (Disaster Management Training and Education Centre for Africa) alumni, studied drought mitigation – with a strong focus on communicating important water-saving information. 

Coming out of the closet

“We often point to the mining, agriculture, and energy sectors as water pollution culprits, which they are, but what about closer to home?” Dr Greyling asks. It is good if you take short showers, harvest rainwater, and are conscious about closing taps, but, she explains, there is a big problem hiding in your closet. Textiles. “It is difficult to put an exact number or ranking to it, but the textile industry could easily be in the top 10 water polluters. The cotton plant requires a lot of water and is one of the most chemically dependent crops in the world. Long before manufacturing starts, water is already at stake.” Not that polyester, or polyester blends are much better – when washed, thousands of microplastic fibers are released that eventually end up in our water sources and the oceans.

To dye for
“Most dyes used for textiles are also heavy water pollutants,” she explains. “And since we’ve developed a taste for cheap, mass-produced clothing, the production sites take strain – putting the community and environment at risk. When you wash these cheaply made garments, the same toxic dye is often visibly released.” The fashion industry is regularly criticised by animal activists for their insidious labour practices. But maybe it is time to help limit their environmental impact too.  

One in, one out
“We must unlearn our fashion gluttony. There is no pride in having a wardrobe full of clothes that you do not wear. Buy less, buy better quality, and care for your clothes so that you don’t have to replace them that often. To make one cotton T-shirt, up to 2 700 liters is used – that is 2 ½ years of drinking water for one person. My household applies a ‘one-in-one-out’ rule. You can only buy, for example, a new pair of denim jeans, if you take an old pair out that you either donate or repurpose. It works very well – you think twice about purchasing.”

A helping hand
Dr Greyling thinks that beside individual efforts, the UFS community can contribute a lot toward reducing textile water pollution, such as opening a pre-used clothing bank on campus. “Students are very influential and can easily create a ‘cool to re-use’ fashion trend, even if just locally. Also, research students can further explore and develop textile alternatives like bamboo, hemp, or a more water-friendly synthetic.” 

News Archive

Plant-strengthening agent a result of joint effort between UFS and German company
2015-07-27

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.

The application of a plant-strengthening agent in the agricultural industry has, until recently, been largely ignored, says Dr Elmarie van der Watt of the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS). The agent was co-developed by researchers at the UFS and a German company.

The product is moving into new markets, such as China, Vietnam, the USA, and Australia.

ComCat® was the result of extensive research by the German company Agraforum AG. Commercialisation was limited initially to Europe, while research was expanded to other parts of the world, with the University of the Free State as the main research centre.  ComCat® is a unique, non-toxic plant strengthening agent derived from wild plants. It enhances plant growth and yield, as well as resistance against abiotic and biotic stress factors.

Dr Van der Watt says that, in nature, plants communicate and interact by means of allelochemicals (the inherent silent tool of self-protection among plants) and other phytochemicals (chemical compounds that occur naturally in plants), as part of their resistance mechanisms towards biotic and abiotic stress conditions.

Most wild-plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent. “Active compounds contained in extracts from wild plants applied to monoculture crops can potentially supply the signal for the latter to activate their dormant resistance mechanisms.” 

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.  A major advantage is that, despite its enhancing effects on root development and yield, it does not induce unwanted early vegetative growth that could jeopardise the final yield, as happened in the past for nitrogen application at an early growth stage. 

Dr Van der Watt says, “Physiological data on the effect of the natural bio-stimulant product on photosynthesis, respiration, and resistance towards biotic stress conditions indicate that it can be regarded as a useful tool to manipulate agricultural crops. Research also showed that the field of application for this natural product is never-ending, and new applications are being investigated every day.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept