Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 May 2018 Photo Varsity Sports
Maryke Coetzee is the new captain of the Crinums netball team
Maryke Coetzee is the new captain of the Crinums netball team.

Despite being a very young team the Free State Crinums are packed with Kovsie players, who will start the Brutal Fruit Netball Premier League as one of the strongest contenders and will hopefully be crowned the country’s best netball province.

The five-week long competition starts on Friday (11 May) in Johannesburg. The Crinums is a de facto Kovsie team with all 15 squad members currently doing a course at the university. Eleven of them were in action for the Kovsies in the Varsity Netball competition in 2017. They have only lost four players from last year which, along with the defending champs, the Jaguars, is the fewest by any team. They also boast experience in every position. The four newcomers in the squad are Sikholiwe Mdletshe, Jana Scholtz, Rykie Venter and Marétha van Heerden. Mdletshe and Venter have played for the Kovsies before. 

After winning the trophy for three years in a row, the Crinums were unable to defend it in 2017 when they finished fifth. It was, however, with a team that was officially the youngest, with an average age of 21 years and five months. This year it has increased to 21 years and six months. 

The team is coached by Kovsie netball coach, Burta de Kock, and skippered by goalkeeper Maryke Coetzee. She and Tanya Mostert (goal defender) will participate in their fifth Premier league.

The Crinums start with two matches against teams they haven’t lost to before. On Friday night they tackle the Sunbirds from Mpumalanga and a day later the Baobabs from Limpopo.

The Crinums squad: Alicia Puren, Ané Retief, Gertriana Retief, Jana Scholtz, Khanyisa Chawane, Khomotso Mamburu, Lefébre Rademan, Luscha Pienaar, Marétha van Heerden, Marna Claassens, Maryke Coetzee, Meagan Roux, Rykie Venter, Sikholiwe Mdletshe, Tanya Mostert.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept