Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 May 2018 Photo Anja Aucamp
Microbiology department receives Research Chair in Pathogenic Yeasts Prof Carlien Pohl-Albertyn
Prof Carlien Pohl-Albertyn, Professor in the Department of Microbial, Biochemical and Food Biotechnology


The National Research Foundation (NRF) recently approved a fifth research chair for the University of the Free State (UFS), the Research Chair in Pathogenic Yeasts. Prof Carlien Pohl-Albertyn from the Department of Microbial, Biochemical and Food Biotechnology, will be chairing this research chair. 

Activities of the Research Chair in Pathogenic Yeasts builds on existing research strengths and will contribute towards understanding pathobiology of medically significant pathogenic yeasts belonging to the genera Candida and Cryptococcus. 

According to Prof Pohl-Albertyn, the research group, established in 2014, is the only one in South African focusing on understanding the role of bioactive lipids in host-pathogen interaction as well as in the search for novel drug targets. The group brought together three principal investigators, Prof Pohl-Albertyn, Prof Koos Albertyn and Dr Olihile Sebolai, with knowledge regarding various virulence factors (including immunomodulatory metabolites) produced by the Candida and Cryptococcus as well as molecular biology of yeasts. Besides the three principal investigators, the group also includes five PhD students, nine MSc students, four BSc honours students as well as two postdoctoral fellows. 

Current projects of the group include the production of immunomodulatory compounds by the yeasts, finding novel targets for antifungal drugs and the interaction between the yeasts and different hosts using a variety of infection models. In addition, the interaction between pathogenic yeasts and other co-infecting pathogens is also being investigated. 

Why research on fungal infections?
“As a result of presently used treatments for diseases and HIV/Aids, and the advances in medical interventions, many diseases no longer pose a threat to humans and life expectancy is prolonged. However, this has also caused an increase in various opportunistic infections, and most of all, fungal infections.

“With an increase in the number of individuals sensitive to invasive fungal infections, yeasts have begun to be reported more frequently as pathogens (yeasts that can cause disease). Infections by pathogenic yeasts affect a wide variety of patients. Although most of them are immunosuppressed (including HIV positive) other underlying conditions may predispose people to such infections. These include extremes of age (premature infants and the elderly), diabetes, cancer and cystic fibroses. In addition, patients hospitalised in intensive care units, as well as patients undergoing major abdominal or thoracic surgery are at high risk of invasive candidiasis. Similarly, HIV/Aids, liver cirrhosis and immunosuppressive therapy are known risk factors for invasive cryptococcosis,” said Prof Pohl-Albertyn.

According to her an important hurdle in the treatment of invasive yeast infection is the emergence of drug resistance in these pathogens. Therefore, research into pathobiology, including new drug targets, as well as novel treatment options, is a necessity. 

In line with the UFS research strategy
The NRF call for research chairs, specifically aimed at female researchers at universities that currently have fewer than 15 research chairs, came out in May 2017.

The university considers the current SARChi Chairs and the possibility of future chairs as an integral and strategic initiative to increase its national and international standing through excellent academic and research leadership. A Research Chair in Pathogenic Yeasts is therefore an invaluable addition to the UFS Research Strategy. 

The Research Chair is for five years, and is renewable for three terms.

Microbiology from University of the Free State on Vimeo.

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept