Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 November 2018 Photo Sonia Small
Matrics 2018 a shift from access to success urgently needed in higher education
According to UFS Rector and Vice-Chancellor, Prof Francis Petersen, we should ask ourselves how learners successfully exit institutions of higher learning – within the minimum time and with an appropriate qualification that will enable them to start earning an income and contribute to the economy.

Opinion article by Prof Francis Petersen

 

With Grade 12 learners from across the county in the full throes of writing their matric examination, one inevitably wonders about 2019 and where those who pass successfully, will find themselves.
 
The announcement of subsidised free education last year has increased learners’ access to higher education.
 
However, the question we should ask is no longer how these learners enter institutions of higher learning, but how they exit successfully – within the minimum time and with an appropriate qualification that will enable them to start earning an income and contribute to the economy.
 
Universities getting involved in schools

I believe universities have a critical role to play in ensuring their own students’ success. It often involves taking a step back and getting actively involved in the schools that supply us with a new cohort of first-year students annually. We should not wait until they reach our campuses to identify academic obstacles; we should be proactive and do what we can to help improve our school systems.

At the University of the Free State, we have established Social Responsibility Enterprises (SRE) on our South Campus in Bloemfontein, which focus on the mentoring of teachers in order to make a sustainable impact. A total of 78 schools in the Free State, Mpumalanga, and the Eastern Cape benefit from this programme. SRE mentors are assisting school principals with school management, while teachers in Mathematics, Physical Science, Accounting, and English as language of learning are assisted in mastering curriculum content, pedagogy, and classroom management. 

Mentors visit schools and share knowledge, extra material, and technology to improve the standard of teaching. The impact has been significant. Matric results, Mathematics pass rates, and Physical Science pass rates have improved dramatically in these schools. We also identify learners with the potential to get access to university (i.e. first-generation students) and assist them through extra classes and in applying for tertiary education and bursaries.

Using technology to reach learners

Another important initiative is the Internet Broadcast Project (IBP), established on our South Campus seven years ago. Our aim is to take quality education to all learners across the Free State, regardless of their socio-economic backgrounds and the standard of education at their schools. Schools are equipped with internet broadcasting devices, and lessons by top-qualified presenters in a studio are transmitted live to learners. They also have an opportunity to interact with these presenters.  Currently, the departments of Education in three provinces (including the Western Cape) are also considering the implementation of the IBP as part of their interventions in schools.
 
A total of 71 000 learners in 83 different schools are currently reached through this project every week – and the impact is far-reaching. The Free State has delivered the best matric results in the country for the past two years. Last year, the Free State MEC for Education, Tate Makgoe, made special mention of the IBP for the profound role it played in this achievement.
 
Understanding students’ needs

However, preparing learners for access to higher education is not enough; the crucial factor is how they exit successfully. The university’s Centre for Teaching and Learning (CTL) is continuously developing data analytics to better understand our students and to help them navigate their studies. Making use of international funding, CTL is playing a leading role nationally to develop academic advising (using predictive data analytics) that helps students match their studies with their career and life goals.

One of the main factors that has been found to inhibit student performance, is food insecurity. Research has shown this to be a challenge faced by universities across the world. In South Africa, our institutions of higher learning have risen to this challenge, responding with efforts in various forms. At the University of the Free State, the No Student Hungry initiative (NSH) was launched in 2011. A research study conducted by our Department of Nutrition and Dietetics indicated that 59% of the student population suffer from food insecurity. Many of these students eventually drop out of higher education because of the need to earn an income. The NHS provides our students in need with modest food allowances and daily access to one balanced meal. Students are selected in terms of financial need, academic performance, participation in student life, and a commitment to giving back to the community. The programme allows students to focus on their studies without worrying about their next meal, thus increasing their chances to excel academically and ultimately obtain their degrees.  Since its inception, close to a thousand students have been assisted by this initiative and have given back nearly 37 000 community hours to South African communities.
 
Currently, the NSH programme is enhanced through the development of an institutional endowment fund aimed at raising capital from business, industry, and the private sector. This provides an opportunity for these sectors to become involved and support the challenge of food security among students, thereby supplementing the efforts of the university and government. 

Teamwork needed to progress from access to success

Teamwork such as this is needed on all levels to transform the educational landscape in our country. As institutions of higher learning, we need to increasingly find innovative ways to become involved in the broader communities we serve – beyond our academic curricula.
 
In this way, we will finally be able to move beyond the question of access that has been dominating discourse and demonstration for so long and focus more specifically on ensuring that our students successfully exit the post-school system.

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept