Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 September 2018 Photo Charl Devenish
Science Its a girl thing
Innocensia Mangoato’s research on using cannabis to reverse anticancer drug resistance has been awarded in the prestigious Women in Science Awards.


“There’s this misconception among young people that science is difficult and that it’s somehow a man’s domain,” says Innocensia Mangoato, Masters student in Pharmacology, who has just been awarded in the prestigious Women in Science Awards by the Department of Science and Technology.

Cannabis research

Innocensia won in the Master’s Degree category for her research on the use of cannabis in reversing anticancer drug resistance. Her department had to apply for a special permit to grow cannabis for research and medicinal purposes.

“Her findings have already indicated a promising reversal of resistance to drugs in a variety of cancers. We plan to explore these results further in a possible PhD,” says her study leader, Prof Motlalepula Matsabisa.

Innocensia says she’s always had an interest in science, and initially wanted to study medicine. She ended up doing a BSc in Physiology and Genetics.

She hopes that her research will help government to develop a policy around the use of cannabis for medicinal purposes which could ultimately lead to developing cancer treatment with fewer side-effects.

Female mentors

“My mentor during my Honours studies was Dr Makhotso Lekhoa. Her passion for her field and her patience in conveying it to others really inspired me. We have some very powerful women in our Pharmacology Department,” says Innocensia.

Passion for science 

“You know you’re passionate about your work when you find yourself going to the lab on Sunday afternoons!” she says. “I’m happy that I can be contributing to the knowledge production on this campus. And maybe one day I can be a mentor to other girls with that same passion for science.”

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept