Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
31 January 2019 | Story Leonie Bolleurs | Photo Earl Slipher
Mars
One of the first colour photographs of Mars, taken through the lens of the Lamont-Hussey telescope in 1939. The telescope was restored and is currently on display at the Naval Hill Planetarium.

In 2018 the University of the Free State (UFS) launched the historic 27-inch Lamont-Hussey Refractor telescope exhibit together with the completed observation platform and a garden in front of the Naval Hill Planetarium in Bloemfontein.

The re-installation of the telescope as a static outdoor exhibition at Naval Hill is now complete. The project started several years ago after the recovery of abandoned parts of the old telescope. What followed was a story of trial, patience, careful planning and a lot of hard work.

 

Taking it apart

According to Dawid van Jaarsveld from the UFS Department of Physics, the mounting and tube of the Lamont telescope has returned to its home, the Lamont-Hussey Observatory, for display. The telescope had 47 years of service and years of abandonment in the veld after it was taken apart in 1975.

Its former telescope dome now hosts the Naval Hill Planetarium, the first digital planetarium in Sub-Saharan Africa.

The telescope was taken apart after the observatory was closed in 1974. It was dismantled and the optics were sent back to the University of Michigan with the largest pieces “left for dead in the veld” on the grounds of the Ehrlichpark Fire Station.

According to Dr Hendrik van Heerden from the UFS Department of Physics, who assisted in the technical side of re-installing the telescope, the larger pieces were recovered by Braam van Zyl and subsequently moved into the museum hanger of the Bloemfontein Fire Brigade where they stayed for many years.

 

Contribution to science

The University of Michigan in the US built the Lamont-Hussey Observatory between 1926 and 1928 in Bloemfontein for the study of double stars. The telescope had great historic significance and was used by professional astronomer RA Rossiter from Michigan, who set the record for discovering and measuring more than 5 000 double stars. The planetarium also measured the most double stars in the world, more than 7 000.

Van Jaarsveld describes a double star – also known as a binary star system – as two stars orbiting around one another. Studies of double stars enable researchers to determine the mass of stars.

Earl Slipher used the telescope to take one of the very first colour photographs of Mars in 1939. Slipher took 60 000 photos of Mars in 1939, 1954 and 1956 with the telescope. He was the world expert on the planet at the time. The camera Slipher used is displayed in the Boyden Observatory museum just outside Bloemfontein.

 

Putting it together

Van Heerden continues: “In early 2017 the components [of the telescope] were relocated to Dukoc Manufacturing in Bloemfontein for cleaning, treatment and painting. It took a while, as the missing components had to be manufactured before the final painting could be completed. The missing pieces were made with the help of the original blueprints of the telescope, provided by Prof Patrick Seitzer of the University of Michigan.

“These blueprints, along with measurements taken from the cleaned parts at Dukoc Manufacturing were used by Barend Crous, UFS Head of Instrumentation, to develop and manufacture the missing parts. These include the polar axis (solid steel axle over 3 m long and weighing more than one ton), axis-bearing caps (cast-iron pieces weighing more than 100 kg and 200 kg respectively) and telescope position wheels and gear works. After the required components were manufactured and refurbished, they were relocated to the Naval Hill Planetarium for the launch ceremony which was held on 5 June 2018.

“Planning of the installation of the telescope thereafter started in earnest. The jigsaw had to be put together again. The sheer size of the parts required some heavy equipment during the installation. With hard work, good coordination and a bit of luck, a team consisting of myself as project coordinator and consultant, Barend Crous, site engineer; Innes Basson, supervisor; Denver de Koker, handyman; and Wikus Storm, welder, got the job done,” Dr Van Heerden said.

 

Information sessions

Astronomy enthusiasts, tourists, school groups and other members of the public can now visit the Lamont-Hussey telescope with it finally back home after many years of neglect and abandonment in the veld. It can again hold itself high, looking at the stars.

The official opening of the telescope will take place on 26 April 2019 and Prof Seitzer from the University of Michigan will attend the opening event.

The refurbishment of the old telescope and the establishment of the new garden and observing platform were made possible by a R1 million donation by ArcelorMittal.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept