Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 June 2019 | Story Ruan Bruwer | Photo BackpagePix
Lefébre Rademan
Lefébre Rademan, wing attack and goal attack, received seven Player of the Match awards in her last 17 matches for the Free State and the University of the Free State.

While she had an outstanding Telkom Netball League and was recognised as one of the best players, Lefébre Rademan is keen to take her game to the next level.

The 22-year-old BEd honours student at the University of the Free State captained the Free State Crinums to the third position in the league, and was named as the best shooter. Her 201 goals from 235 attempts (86% goal average) was the second highest by any shooter with more than 100 attempts.

Rademan’s four Player of the Match awards was the joint most. This followed last year’s Varsity Netball tournament where she also finished with the joint most awards for the best player in a fixture.

“Yes, I would say this has been the best form of my career. But I believe I can take it a step further. Reaching this form is something that comes over time with hard work.” 

Rotating between positions

What impressed about the South African A (2018) and SA U21 (2016 and 2017) player, was how she adapted when she was rotated between wing attack and goal attack during matches.

Although the majority of her career was as a defender (school) and wing attack (post school), goal attack was a position she always thought she would like. 

“In my first year, I used to nag our coach (Burta de Kock) to give me some playing time there. It is funny how it worked out, as I’m now playing mostly goal attack.”

She still hopes to win a couple of trophies with the Kovsie and Free State teams and said she will give her ‘absolute all’ to make the Protea team.

According to De Kock, Rademan is a hard worker with a never-give-up approach. “I can play her anywhere and she won’t let anyone down. Lefébre never takes praise for herself. She sets the example on and off court.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept