Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 May 2019 | Story Ruan Bruwer | Photo Reg Caldecott
Khanyisa Chawane
Khanyisa Chawane is one of 12 members of the national netball team to the World Cup in July. Other team members include former students of the University of the Free State, Maryka Holtzhausen and Karla Pretorius.

Exactly one quarter of the South African netball team to the World Cup tournament in England in July will consist of current and former students from the University of the Free State (UFS).

Less than a year after making her Protea debut, Khanyisa Chawane was selected for the team alongside former UFS students, Maryka Holtzhausen and Karla Pretorius.

Chawane is a fifth-year BSc Geography and Statistics student who made her Kovsie debut in 2015. 

“The selection means so much to me. It’s such an honour and privilege to represent my country at this high level of netball. I’m super excited about it, because any team can win it this year,” Chawane, a centre court player, said.

Both Chawane (2018) and Pretorius (2014 and 2015) were previously named as die best student netball player in the country.

Pretorius, with 80 caps behind her name and widely regarded as the best goal defender in the world, represented and captained the UFS team from 2009 to 2015. She is the Protea vice-captain.

Holtzhausen, a goal attack and only the second player to reach 100 tests for the Proteas (106 in total), played for and captained the UFS between 2007 and 2014. She played her netball in England over the past couple of months. When she returns from the World Cup, she will again take up her part-time job as a sports manager at KovsieSport.

Burta de Kock, who has coached all three players at the UFS, said they serve as a motivation and example for the current group of players from the UFS.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept