Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 November 2019 | Story Nonsindiso Qwabe | Photo Charl Devenish
Ultrasound read more
Checking out some features of the Samsung ultrasound system are, from the left: SSEM Mthembu Medical's Chase Hutchinson and Jannie Coetzee; Head of Anaesthesiology, Dr Edwin Turton; and Head of Undergraduate Training in Anaesthesiology, Prof Lomby Odendaal.

Medical students in the Faculty of Health Sciences at the UFS will now be able to learn how to perform procedures such as the precise location of a vein for intravenous lines and for diagnostic procedures such as detecting abnormalities in pregnancies, identifying gallstones, and diagnosing trauma-related injuries with ease.  This will be made possible by the placement of a one-of-a-kind ultrasound machine – putting them on par with cutting-edge global medical technology.

A first ever in the medical curriculum of undergraduate students at the UFS

The state-of-the-art, compact HS70A Samsung ultrasound system to the value of R1,4 million was unveiled in the Faculty of Health Sciences’ Clinical Simulation and Skills Unit on 19 November. A first ever in the medical curriculum of undergraduate students at the UFS, it is set to revolutionise the delivery of health-care education in the faculty, said Prof Lomby Odendaal, Teaching and Learning Coordinator for undergraduate anaesthesiology training in the Department of Anaesthesiology.

The ultrasound system was donated by SSEM Mthembu Medical and Samsung Korea.
Prof Odendaal said for the first time in the history of the undergraduate MB ChB curriculum, the ultrasound will be available to medical students from their third year. Students have never had the opportunity to be trained in using ultrasound this early in their careers.

Improved clinical training experience of students

Ultrasound is a diagnostic medical tool that uses sound waves to produce images of internal structures of the body. Prof Odendaal said ultrasound is important to determine pathology and diseases in the body and to provide point-of-care ultrasound. Having the ultrasound in the unit will transform the clinical training experience of students, training them to provide better treatment and medical care, even in constrained environments, to improve patient care.

“There is almost no structure in the body that cannot be examined using ultrasound. It makes the delivery of healthcare more effective. If you make a better diagnosis, the treatment and care will be much better. Ultrasound is so important lately that if you don’t do it, you will be left behind. That’s why we decided to bring this to the students. We can’t miss out on teaching our students about ultrasound, because we want them to be familiar with it by the time they finish their medical degree, so that, even if they go to smaller hospitals, they will be able to spread diagnostic care to the periphery,” Prof Odendaal said.

Streamlined workflow for patient care

“The cutting-edge technology and rich image quality of the ultrasound will deliver top-notch diagnoses to suit the diverse departments within the faculty,” said Chase Hutchinson, National Product Manager at SSEM Mthembu Medical. It comes with various pre-set models to cater for different needs and applications, allowing streamlined workflow for higher efficiency and patient care.

According to Prof Mathys Labuschagne, the Head of the Clinical Simulation and Skills Unit, ultrasound training will improve the quality of doctors graduating in the faculty. “We are really excited about this. You can diagnose many conditions using ultrasound and deliver point-of-care ultrasound; this will become a natural part of students’ training and clinical practice in future.”

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept