Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 November 2019 | Story Nonsindiso Qwabe | Photo Charl Devenish
Ultrasound read more
Checking out some features of the Samsung ultrasound system are, from the left: SSEM Mthembu Medical's Chase Hutchinson and Jannie Coetzee; Head of Anaesthesiology, Dr Edwin Turton; and Head of Undergraduate Training in Anaesthesiology, Prof Lomby Odendaal.

Medical students in the Faculty of Health Sciences at the UFS will now be able to learn how to perform procedures such as the precise location of a vein for intravenous lines and for diagnostic procedures such as detecting abnormalities in pregnancies, identifying gallstones, and diagnosing trauma-related injuries with ease.  This will be made possible by the placement of a one-of-a-kind ultrasound machine – putting them on par with cutting-edge global medical technology.

A first ever in the medical curriculum of undergraduate students at the UFS

The state-of-the-art, compact HS70A Samsung ultrasound system to the value of R1,4 million was unveiled in the Faculty of Health Sciences’ Clinical Simulation and Skills Unit on 19 November. A first ever in the medical curriculum of undergraduate students at the UFS, it is set to revolutionise the delivery of health-care education in the faculty, said Prof Lomby Odendaal, Teaching and Learning Coordinator for undergraduate anaesthesiology training in the Department of Anaesthesiology.

The ultrasound system was donated by SSEM Mthembu Medical and Samsung Korea.
Prof Odendaal said for the first time in the history of the undergraduate MB ChB curriculum, the ultrasound will be available to medical students from their third year. Students have never had the opportunity to be trained in using ultrasound this early in their careers.

Improved clinical training experience of students

Ultrasound is a diagnostic medical tool that uses sound waves to produce images of internal structures of the body. Prof Odendaal said ultrasound is important to determine pathology and diseases in the body and to provide point-of-care ultrasound. Having the ultrasound in the unit will transform the clinical training experience of students, training them to provide better treatment and medical care, even in constrained environments, to improve patient care.

“There is almost no structure in the body that cannot be examined using ultrasound. It makes the delivery of healthcare more effective. If you make a better diagnosis, the treatment and care will be much better. Ultrasound is so important lately that if you don’t do it, you will be left behind. That’s why we decided to bring this to the students. We can’t miss out on teaching our students about ultrasound, because we want them to be familiar with it by the time they finish their medical degree, so that, even if they go to smaller hospitals, they will be able to spread diagnostic care to the periphery,” Prof Odendaal said.

Streamlined workflow for patient care

“The cutting-edge technology and rich image quality of the ultrasound will deliver top-notch diagnoses to suit the diverse departments within the faculty,” said Chase Hutchinson, National Product Manager at SSEM Mthembu Medical. It comes with various pre-set models to cater for different needs and applications, allowing streamlined workflow for higher efficiency and patient care.

According to Prof Mathys Labuschagne, the Head of the Clinical Simulation and Skills Unit, ultrasound training will improve the quality of doctors graduating in the faculty. “We are really excited about this. You can diagnose many conditions using ultrasound and deliver point-of-care ultrasound; this will become a natural part of students’ training and clinical practice in future.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept