Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 November 2019 | Story Nonsindiso Qwabe | Photo Charl Devenish
Ultrasound read more
Checking out some features of the Samsung ultrasound system are, from the left: SSEM Mthembu Medical's Chase Hutchinson and Jannie Coetzee; Head of Anaesthesiology, Dr Edwin Turton; and Head of Undergraduate Training in Anaesthesiology, Prof Lomby Odendaal.

Medical students in the Faculty of Health Sciences at the UFS will now be able to learn how to perform procedures such as the precise location of a vein for intravenous lines and for diagnostic procedures such as detecting abnormalities in pregnancies, identifying gallstones, and diagnosing trauma-related injuries with ease.  This will be made possible by the placement of a one-of-a-kind ultrasound machine – putting them on par with cutting-edge global medical technology.

A first ever in the medical curriculum of undergraduate students at the UFS

The state-of-the-art, compact HS70A Samsung ultrasound system to the value of R1,4 million was unveiled in the Faculty of Health Sciences’ Clinical Simulation and Skills Unit on 19 November. A first ever in the medical curriculum of undergraduate students at the UFS, it is set to revolutionise the delivery of health-care education in the faculty, said Prof Lomby Odendaal, Teaching and Learning Coordinator for undergraduate anaesthesiology training in the Department of Anaesthesiology.

The ultrasound system was donated by SSEM Mthembu Medical and Samsung Korea.
Prof Odendaal said for the first time in the history of the undergraduate MB ChB curriculum, the ultrasound will be available to medical students from their third year. Students have never had the opportunity to be trained in using ultrasound this early in their careers.

Improved clinical training experience of students

Ultrasound is a diagnostic medical tool that uses sound waves to produce images of internal structures of the body. Prof Odendaal said ultrasound is important to determine pathology and diseases in the body and to provide point-of-care ultrasound. Having the ultrasound in the unit will transform the clinical training experience of students, training them to provide better treatment and medical care, even in constrained environments, to improve patient care.

“There is almost no structure in the body that cannot be examined using ultrasound. It makes the delivery of healthcare more effective. If you make a better diagnosis, the treatment and care will be much better. Ultrasound is so important lately that if you don’t do it, you will be left behind. That’s why we decided to bring this to the students. We can’t miss out on teaching our students about ultrasound, because we want them to be familiar with it by the time they finish their medical degree, so that, even if they go to smaller hospitals, they will be able to spread diagnostic care to the periphery,” Prof Odendaal said.

Streamlined workflow for patient care

“The cutting-edge technology and rich image quality of the ultrasound will deliver top-notch diagnoses to suit the diverse departments within the faculty,” said Chase Hutchinson, National Product Manager at SSEM Mthembu Medical. It comes with various pre-set models to cater for different needs and applications, allowing streamlined workflow for higher efficiency and patient care.

According to Prof Mathys Labuschagne, the Head of the Clinical Simulation and Skills Unit, ultrasound training will improve the quality of doctors graduating in the faculty. “We are really excited about this. You can diagnose many conditions using ultrasound and deliver point-of-care ultrasound; this will become a natural part of students’ training and clinical practice in future.”

News Archive

Einstein's gravitational waves as creative as Bach's music, says UFS physicist
2016-02-19

Description: Gravitational waves  Tags: Gravitational waves

Profile of the gravitational waves of the colliding black holes.

Prof Pieter Meintjes, Affiliated Researcher in the Department of Physics at the University of the Free State, welcomed the work done by the Laser Interferometer Gravitational-Wave Observatory (LIGO) science team.
 
For the first time, researchers from two of the American Ligo centres, in Washington and Louisiana respectively, observed gravitational waves directly, 100 years after Albert Einstein said they existed. "My study field in astrophysics involves relativistic systems. Therefore, Einstein's view of gravity is crucial to me. I consider the theory as the highest form of human creativity - just like the music of JS Bach. Over the past 100 years, the theory has been tested through various experiments and in different ways.
 
“The discovery of gravitational waves was the last hurdle to overcome in making this absolutely unfaltering. I am therefore thrilled by the discovery. It is absolutely astounding to imagine that the equations used to make the predictions about the gravitational-wave emissions when two gravitational whirlpools collide - as discovered on 14 September 2015 by LIGO - are basically Einstein's original equations that were published way back in 1916 - in other words, 100 years ago.
 
“The LIGO detectors have been operational since the early 1990s, but they had to undergo several stages of upgrades before being sensitive enough to make detections. LIGO is currently in its final stage, and is expected to function at optimal sensitivity only within a year or two. To be able to conduct the measurements at this stage is therefore a fantastic achievement, since much more funding will certainly be deposited in the project,” Prof Meintjes says.

Description: Prof Pieter Meintjes Tags: Prof Pieter Meintjes

Prof Pieter Meintjes
Photo: Charl Devenish

The search for gravitational waves by means of the Square Kilometre Array (SKA) is one of the focus points in research by both Prof Meintjes and PhD student, Jacques Maritz. This involves the study of radio signals from pulsars that might show signs of effects by gravitational waves. They are looking for signs of gravitational waves. The gravitational waves discovered and studied in this manner would naturally vary much more slowly than the signal discovered from the two colliding gravitational waves.
 
The discovery will definitely provide renewed impetus to the Square Kilometre Array (SKA) Project to use the dispersion of pulsar signals, and to search for the impact of gravitational waves on signals as they travel through the universe. According to Prof Meintjes, the SKA will definitely contribute fundamentally to the Frontier research, which will provide a good deal of publicity for the UFS and South Africa, if significant contributions are made by local researchers in this field.

Video clip explaining gravitational waves

 

  • The Department of Physics will present a general, non-technical talk concerning the recent detection of gravitational waves by the 2 Laser Interferometer Gravitational Wave Observatories (LIGO):

Wednesday 24 February 2016
11:00-12:00
New lecture auditorium, Department of Physics

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept