Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Johan Roux
Prof Zakkie Pretorius
Prof Zakkie Pretorius, Research Fellow at the UFS Department of Plant Sciences.

Prof Zakkie Pretorius, Research Fellow, and Prof Botma Visser, Associate Professor, both from the Department of Plant Sciences at the University of the Free State (UFS), partnered in a ground-breaking research project headed by Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. Together, these scientists solved a 20-year-old mystery, uncovering the origins of one of the world’s deadliest strains of cereal rust disease.

The manuscript, with the title, Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation, was accepted for publication in Nature Communications.

According to a statement released by CSIRO, research shows that the devastating Ug99 strain of the wheat stem-rust fungus was not the result of a sexual cross between different rust strains as previously thought, but in fact was created when fungal strands simply fused to create a new hybrid strain.

This process is called somatic hybridisation and enables fungi to merge their cells and exchange genetic material without going through a complex sexual reproduction cycle. The study found that half of Ug99’s genetic material came from a strain that occurred in Southern Africa around 100 years ago and eventually spread to Australia.

The discovery implies that other crop-destroying rust strains could hybridise elsewhere with Ug99, for example, to exchange genetic material and create a whole new enemy.

While there was some speculation that rust strains could hybridise – based on laboratory studies in the 1960s as well as some earlier studies on the topic – this comprehensive research now provided the first genomic evidence that the process can generate new strains.

History of Ug99

Prof Pretorius was the first person to describe the dangerous Ug99 isolate, confirming the ability of the isolate to leave the Sr31 resistance gene ineffective (up to that time, effective against all known wheat stem-rust races). This laid the basis for international concern.

He named the field sample Ug99, based on the country of origin (Uganda) and year of sample collection (1999). 

“The Sr31 resistance gene and associated traits were so effective that the gene occurred in almost 70% of CIMMYT’s (Mexican-based International Maize and Wheat Improvement Center) spring wheat germplasm. In addition, many popular cultivars containing the gene were released around the world.”

“Ug99 then disappeared for a few years. When the race re-appeared in East Africa, it caused localised but severe epidemics,” he said.

Prof Pretorius continues: “Leading wheat breeders and pathologists were concerned that Ug99 could destroy wheat production in many global regions where wheat is critical for food security. Thus, in 2005, Dr Norman Borlaug, Nobel laureate and father of the green revolution, called for a meeting in Kenya where a global effort to combat the threat was initiated. The international wheat research community was mobilised and with funding primarily from the Bill and Melinda Gates Foundation and coordinated by Cornell University in the USA, research commenced.”

wheat stem rust

Wheat stem rust 14: Rust diseases are the cause of extensive crop losses each year. With this recent discovery, published in 
Nature Communications, scientists can now better identify the resistance genes which can be bred into wheat varieties to give crops 
long-lasting protection against rust. (Photo: Supplied) 

“From field trials in Kenya, it soon became apparent that 90% of the world’s wheat varieties were susceptible to Ug99. Although breeding and selection for resistance started in earnest, the pathogen adapted, gaining virulence for other previously effective resistance genes. At present, 13 races have been described within the Ug99 group occurring in 13 countries, mostly in Africa, but also in Yemen and Iran. Five of these races are present in South Africa, all confirmed by scientists from the UFS and ARC-Small Grain in Bethlehem. The original Ug99 has, however, never been detected in South Africa.”

Combined efforts

Rusts are common fungal diseases of plants. The spores of the fungus attach themselves to the stems and leaves of wheat plants and essentially suck the nutrients from the plant. Plants either die or produce shrivelled and low-quality grain. 

Group Leader at CSIRO, Dr Melania Figueroa, agrees that Ug99 is considered the most threatening of all rusts, as it has managed to overcome most stem rust-resistance genes used in wheat varieties.

“There is some good news, however; the better you know your enemy, the more equipped you are to fight against it. Knowing how these pathogens come about means we can better predict how they are likely to change in the future and better determine which resistance genes can be bred into wheat varieties to give long-lasting protection.”

Earlier this year, CSIRO worked with the University of Minnesota and the 2Blades Foundation to improve wheat resistance by stacking five resistance genes into the one wheat plant to combat wheat stem rust. 

The breakthrough came as Dr Figueroa’s group was sequencing Ug99 (then at the University of Minnesota), and at the same time a CSIRO team led by Dr Peter Dodds was sequencing Pgt21 in Australia (Pgt21 is a rust strain that was first seen in South Africa in the 1920s and believed to have been carried to Australia in the 1950s by wind currents). When the two groups compared results, they found that the two pathogens share an almost identical nucleus and therefore half of their DNA.

“This discovery will make it possible to develop better methods to screen for varieties with strong resistance to disease,” said Dr Figueroa.

Molecular fingerprinting

In addition to infection studies, molecular fingerprinting by members of the South African Ug99 race group led by Prof Botma Visser at the UFS, confirmed their genetic placement in context with Ug99 and other global stem rust races. The availability of the original Ug99 collection, along with other local rust isolates in long-term storage at the UFS, was essential to the success of the current research.

Despite the continued evolution of stem-rust variants, excellent progress has been made worldwide in the breeding of resistant wheat cultivars, including in South Africa. With funding from the Winter Cereal Trust, Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences at the UFS, is responsible for the annual testing of all commercial wheat cultivars and advanced breeding lines for appropriate stem rust races.

Dr Melania Figueroa
Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Photo: Kate Langford

News Archive

Government to benefit from training of interpreters
2009-03-31

 
Pictured, from the left, are: Prof Theo du Plessis (Director: Unit for Language Management, UFS), Ms Mokone Nthongoa (HOD: Sport, FS Department of Sport, Arts and Culture), Mr Khotso Sesele (MEC: FS Department of Sport, Arts and Culture) and Prof Engela Pretorius (Vice Dean: Faculty of the Humanities, UFS).
Photo: Mangaliso Radebe
Government to benefit from training of interpreters

The fourth phase of a project to train eight conference interpreters and 30 community interpreters to assist government departments at service delivery points in the Free State was launched this week.

The project is part of the Multilingualism Information Development Programme which brings together the Free State provincial government, the Province of Antwerp and the University of Antwerp in Belgium and the University of the Free State (UFS).

Speaking at the launch of the fourth phase of the project, the MEC for Sport, Arts and Culture in the Free State, Mr Khotso Sesele, said: “The fact that we have been through the first three stages of this project, and are now launching its fourth phase, is indicative of the magnificent progress that has been made. This is a sign that through partnerships we can achieve more.”

The MIDP IV consists of two pillars, namely a practical and a research component. Its aim is to generate interpreting capacity within the provincial Department of Sport, Arts and Culture. The focus is on training an interpreting team over three years which can be employed within a governmental context at various service points.

“As we approach the 2009 FIFA Confederation Cup and the 2010 FIFA World Cup tournaments, it will be important for our communities to be able to interact with millions of foreign nationals who will be in our country from different world destinations during and beyond these two important soccer events,” said the MEC.

“The focus on interpreter training by this fourth phase of MIDP is thus an important factor in ensuring better communication during and beyond these important soccer spectacles that will take place in our country.”
The focus of the first three phases of the MIDP was on the main official languages of the province. This fourth phase, which started in 2008, will run until 2010 and its focus is on the Xhariep District Municipality.

“The provision of interpreting services and its further extension to district municipalities will provide the necessary interpreting skills to our communities that will enhance better interaction amongst ourselves,” said Mr Sesele.

He said the fact that indigenous languages have been “elevated from their marginalised status to being languages of business and commerce” is an important milestone that must be cherished.

This fourth phase of MIDP will also incorporate sign language as part of its focus on interpreting services.

“In our quest to ensure a multilingual dispensation in our province, we need not neglect to remember people with disabilities,” he said. “This is a matter of principle that does not require debate.”

“We should thus ensure the realisation of the goal of MIDP IV which is to ensure smooth communication interaction within the wider public, including the deaf community.”

“This is a wonderful project,” said Ms Mathabo Monaheng, one of the students in the MIDP. “As a sign language interpreter trainee this project will empower me with the necessary skills to be able to make a meaningful contribution to the deaf community in terms of communication.”

The MIDP is funded by the Province of Antwerp and successfully implemented by the Unit for Language Management at the UFS.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt.stg@ufs.ac.za  
31 March 2009

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept