Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Johan Roux
Prof Zakkie Pretorius
Prof Zakkie Pretorius, Research Fellow at the UFS Department of Plant Sciences.

Prof Zakkie Pretorius, Research Fellow, and Prof Botma Visser, Associate Professor, both from the Department of Plant Sciences at the University of the Free State (UFS), partnered in a ground-breaking research project headed by Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. Together, these scientists solved a 20-year-old mystery, uncovering the origins of one of the world’s deadliest strains of cereal rust disease.

The manuscript, with the title, Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation, was accepted for publication in Nature Communications.

According to a statement released by CSIRO, research shows that the devastating Ug99 strain of the wheat stem-rust fungus was not the result of a sexual cross between different rust strains as previously thought, but in fact was created when fungal strands simply fused to create a new hybrid strain.

This process is called somatic hybridisation and enables fungi to merge their cells and exchange genetic material without going through a complex sexual reproduction cycle. The study found that half of Ug99’s genetic material came from a strain that occurred in Southern Africa around 100 years ago and eventually spread to Australia.

The discovery implies that other crop-destroying rust strains could hybridise elsewhere with Ug99, for example, to exchange genetic material and create a whole new enemy.

While there was some speculation that rust strains could hybridise – based on laboratory studies in the 1960s as well as some earlier studies on the topic – this comprehensive research now provided the first genomic evidence that the process can generate new strains.

History of Ug99

Prof Pretorius was the first person to describe the dangerous Ug99 isolate, confirming the ability of the isolate to leave the Sr31 resistance gene ineffective (up to that time, effective against all known wheat stem-rust races). This laid the basis for international concern.

He named the field sample Ug99, based on the country of origin (Uganda) and year of sample collection (1999). 

“The Sr31 resistance gene and associated traits were so effective that the gene occurred in almost 70% of CIMMYT’s (Mexican-based International Maize and Wheat Improvement Center) spring wheat germplasm. In addition, many popular cultivars containing the gene were released around the world.”

“Ug99 then disappeared for a few years. When the race re-appeared in East Africa, it caused localised but severe epidemics,” he said.

Prof Pretorius continues: “Leading wheat breeders and pathologists were concerned that Ug99 could destroy wheat production in many global regions where wheat is critical for food security. Thus, in 2005, Dr Norman Borlaug, Nobel laureate and father of the green revolution, called for a meeting in Kenya where a global effort to combat the threat was initiated. The international wheat research community was mobilised and with funding primarily from the Bill and Melinda Gates Foundation and coordinated by Cornell University in the USA, research commenced.”

wheat stem rust

Wheat stem rust 14: Rust diseases are the cause of extensive crop losses each year. With this recent discovery, published in 
Nature Communications, scientists can now better identify the resistance genes which can be bred into wheat varieties to give crops 
long-lasting protection against rust. (Photo: Supplied) 

“From field trials in Kenya, it soon became apparent that 90% of the world’s wheat varieties were susceptible to Ug99. Although breeding and selection for resistance started in earnest, the pathogen adapted, gaining virulence for other previously effective resistance genes. At present, 13 races have been described within the Ug99 group occurring in 13 countries, mostly in Africa, but also in Yemen and Iran. Five of these races are present in South Africa, all confirmed by scientists from the UFS and ARC-Small Grain in Bethlehem. The original Ug99 has, however, never been detected in South Africa.”

Combined efforts

Rusts are common fungal diseases of plants. The spores of the fungus attach themselves to the stems and leaves of wheat plants and essentially suck the nutrients from the plant. Plants either die or produce shrivelled and low-quality grain. 

Group Leader at CSIRO, Dr Melania Figueroa, agrees that Ug99 is considered the most threatening of all rusts, as it has managed to overcome most stem rust-resistance genes used in wheat varieties.

“There is some good news, however; the better you know your enemy, the more equipped you are to fight against it. Knowing how these pathogens come about means we can better predict how they are likely to change in the future and better determine which resistance genes can be bred into wheat varieties to give long-lasting protection.”

Earlier this year, CSIRO worked with the University of Minnesota and the 2Blades Foundation to improve wheat resistance by stacking five resistance genes into the one wheat plant to combat wheat stem rust. 

The breakthrough came as Dr Figueroa’s group was sequencing Ug99 (then at the University of Minnesota), and at the same time a CSIRO team led by Dr Peter Dodds was sequencing Pgt21 in Australia (Pgt21 is a rust strain that was first seen in South Africa in the 1920s and believed to have been carried to Australia in the 1950s by wind currents). When the two groups compared results, they found that the two pathogens share an almost identical nucleus and therefore half of their DNA.

“This discovery will make it possible to develop better methods to screen for varieties with strong resistance to disease,” said Dr Figueroa.

Molecular fingerprinting

In addition to infection studies, molecular fingerprinting by members of the South African Ug99 race group led by Prof Botma Visser at the UFS, confirmed their genetic placement in context with Ug99 and other global stem rust races. The availability of the original Ug99 collection, along with other local rust isolates in long-term storage at the UFS, was essential to the success of the current research.

Despite the continued evolution of stem-rust variants, excellent progress has been made worldwide in the breeding of resistant wheat cultivars, including in South Africa. With funding from the Winter Cereal Trust, Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences at the UFS, is responsible for the annual testing of all commercial wheat cultivars and advanced breeding lines for appropriate stem rust races.

Dr Melania Figueroa
Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Photo: Kate Langford

News Archive

The state of HIV/AIDS at the UFS
2010-05-11

“The University of the Free State (UFS) remains concerned about the threat of HIV/AIDS and will not become complacent in its efforts to combat HIV/AIDS by preventing new infections”, states Ms Estelle Heideman, Manager of the Kovsies HIV/AIDS Centre at the UFS.

She was responding to the results of a study that was done at Higher Education Institutions (HEIs) in 2008. The survey was initiated by Higher Education AIDS (HEAIDS) to establish the knowledge, attitudes, behaviours and practices (KABP) related to HIV and AIDS and to measure the HIV prevalence levels among staff and students. The primary aim of this research was to develop estimates for the sector.

The study populations consisted of students and employees from 21 HEIs in South Africa where contact teaching occurs. For the purpose of the cross-sectional study an ‘anonymous HIV survey with informed consent’ was used. The study comprised an HIV prevalence study, KABP survey, a qualitative study, and a risk assessment.

Each HEI was stratified by campus and faculty, whereupon clusters of students and staff were randomly selected. Self-administered questionnaires were used to obtain demographic, socio-economic and behavioural data. The HIV status of participants was determined by laboratory testing of dry blood spots obtained by finger pricks. The qualitative study consisted of focus group discussions and key informant interviews at each HEI.

Ethical approval was provided by the UFS Ethics Committee. Participation in all research was voluntary and written informed consent was obtained from all participants. Fieldwork for the study was conducted between September 2008 and February 2009.

A total of 1 004 people participated at the UFS, including the Main and the Qwaqwa campuses, comprising 659 students, 85 academic staff and 256 administration/service staff. The overall response rate was 75,6%.

The main findings of the study were:

HIV prevalence among students was 3,5%, 0% among academics, 1,3% among administrative staff, and 12,4% among service staff. “This might not be a true reflection of the actual prevalence of HIV at the UFS, as the sample was relatively small,” said Heideman. However, she went on to say that if we really want to show our commitment towards fighting this disease at our institution a number of problem areas should be addressed:

  • Around half of all students under the age of 20 have had sex before and this increased to almost three-quarters of students older than 20.

     
  • The majority of staff and a third of students had ever been tested for HIV.

     
  • More than 50% of students drink more than once per week and 44% of students reported being drunk in the past month. Qualitative data suggests that binge drinking over weekends and at campus ‘bashes’ is an area of concern.

Recommendations of the study:

  • Emphasis should be on increased knowledge of sexual risk behaviours, in particular those involving a high turnover of sexual partners and multiple sexual partnerships. Among students, emphasis should further be placed on staying HIV negative throughout university study.

     
  • The distribution of condoms on all campuses should be expanded, systematised and monitored. If resistance is encountered, attempts should be made to engage and educate dissenting institutional members about the importance of condom use in HIV prevention.

     
  • The relationship between alcohol misuse and pregnancy, sexually transmitted infections (STIs), HIV and AIDS needs to be made known, and there should be a drive to curb high levels of student drinking, promote non-alcohol oriented forms of recreation, and improve regulation of alcohol consumption at university-sponsored “bashes”.

     
  • There is need to reach out to students and staff who have undergone HIV testing and who know their HIV status, but do not access or benefit from support services. Because many HIV-positive students and staff are not receiving any kind of support, resources should be directed towards the development of HIV care services, including support groups.

Says Heideman, “If we really want to prove that we are serious about an HIV/AIDS-free campus, these results are a good starting point. It definitely provides us with a strong basis from which to work.” Since the study was done in 2008 the UFS has committed itself to a more comprehensive response to HIV/AIDS. The current proposed ‘HIV/AIDS Institutional response and strategic plan’, builds and expands on work that has been done before, the lessons learned from previous interventions, and a thorough study of good practices at other universities.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
10 May 2010

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept