Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 November 2019 | Story Leonie Bolleurs | Photo Johan Roux
Prof Zakkie Pretorius
Prof Zakkie Pretorius, Research Fellow at the UFS Department of Plant Sciences.

Prof Zakkie Pretorius, Research Fellow, and Prof Botma Visser, Associate Professor, both from the Department of Plant Sciences at the University of the Free State (UFS), partnered in a ground-breaking research project headed by Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. Together, these scientists solved a 20-year-old mystery, uncovering the origins of one of the world’s deadliest strains of cereal rust disease.

The manuscript, with the title, Emergence of the Ug99 lineage of the wheat stem rust pathogen through somatic hybridisation, was accepted for publication in Nature Communications.

According to a statement released by CSIRO, research shows that the devastating Ug99 strain of the wheat stem-rust fungus was not the result of a sexual cross between different rust strains as previously thought, but in fact was created when fungal strands simply fused to create a new hybrid strain.

This process is called somatic hybridisation and enables fungi to merge their cells and exchange genetic material without going through a complex sexual reproduction cycle. The study found that half of Ug99’s genetic material came from a strain that occurred in Southern Africa around 100 years ago and eventually spread to Australia.

The discovery implies that other crop-destroying rust strains could hybridise elsewhere with Ug99, for example, to exchange genetic material and create a whole new enemy.

While there was some speculation that rust strains could hybridise – based on laboratory studies in the 1960s as well as some earlier studies on the topic – this comprehensive research now provided the first genomic evidence that the process can generate new strains.

History of Ug99

Prof Pretorius was the first person to describe the dangerous Ug99 isolate, confirming the ability of the isolate to leave the Sr31 resistance gene ineffective (up to that time, effective against all known wheat stem-rust races). This laid the basis for international concern.

He named the field sample Ug99, based on the country of origin (Uganda) and year of sample collection (1999). 

“The Sr31 resistance gene and associated traits were so effective that the gene occurred in almost 70% of CIMMYT’s (Mexican-based International Maize and Wheat Improvement Center) spring wheat germplasm. In addition, many popular cultivars containing the gene were released around the world.”

“Ug99 then disappeared for a few years. When the race re-appeared in East Africa, it caused localised but severe epidemics,” he said.

Prof Pretorius continues: “Leading wheat breeders and pathologists were concerned that Ug99 could destroy wheat production in many global regions where wheat is critical for food security. Thus, in 2005, Dr Norman Borlaug, Nobel laureate and father of the green revolution, called for a meeting in Kenya where a global effort to combat the threat was initiated. The international wheat research community was mobilised and with funding primarily from the Bill and Melinda Gates Foundation and coordinated by Cornell University in the USA, research commenced.”

wheat stem rust

Wheat stem rust 14: Rust diseases are the cause of extensive crop losses each year. With this recent discovery, published in 
Nature Communications, scientists can now better identify the resistance genes which can be bred into wheat varieties to give crops 
long-lasting protection against rust. (Photo: Supplied) 

“From field trials in Kenya, it soon became apparent that 90% of the world’s wheat varieties were susceptible to Ug99. Although breeding and selection for resistance started in earnest, the pathogen adapted, gaining virulence for other previously effective resistance genes. At present, 13 races have been described within the Ug99 group occurring in 13 countries, mostly in Africa, but also in Yemen and Iran. Five of these races are present in South Africa, all confirmed by scientists from the UFS and ARC-Small Grain in Bethlehem. The original Ug99 has, however, never been detected in South Africa.”

Combined efforts

Rusts are common fungal diseases of plants. The spores of the fungus attach themselves to the stems and leaves of wheat plants and essentially suck the nutrients from the plant. Plants either die or produce shrivelled and low-quality grain. 

Group Leader at CSIRO, Dr Melania Figueroa, agrees that Ug99 is considered the most threatening of all rusts, as it has managed to overcome most stem rust-resistance genes used in wheat varieties.

“There is some good news, however; the better you know your enemy, the more equipped you are to fight against it. Knowing how these pathogens come about means we can better predict how they are likely to change in the future and better determine which resistance genes can be bred into wheat varieties to give long-lasting protection.”

Earlier this year, CSIRO worked with the University of Minnesota and the 2Blades Foundation to improve wheat resistance by stacking five resistance genes into the one wheat plant to combat wheat stem rust. 

The breakthrough came as Dr Figueroa’s group was sequencing Ug99 (then at the University of Minnesota), and at the same time a CSIRO team led by Dr Peter Dodds was sequencing Pgt21 in Australia (Pgt21 is a rust strain that was first seen in South Africa in the 1920s and believed to have been carried to Australia in the 1950s by wind currents). When the two groups compared results, they found that the two pathogens share an almost identical nucleus and therefore half of their DNA.

“This discovery will make it possible to develop better methods to screen for varieties with strong resistance to disease,” said Dr Figueroa.

Molecular fingerprinting

In addition to infection studies, molecular fingerprinting by members of the South African Ug99 race group led by Prof Botma Visser at the UFS, confirmed their genetic placement in context with Ug99 and other global stem rust races. The availability of the original Ug99 collection, along with other local rust isolates in long-term storage at the UFS, was essential to the success of the current research.

Despite the continued evolution of stem-rust variants, excellent progress has been made worldwide in the breeding of resistant wheat cultivars, including in South Africa. With funding from the Winter Cereal Trust, Dr Willem Boshoff, Senior Lecturer in the Department of Plant Sciences at the UFS, is responsible for the annual testing of all commercial wheat cultivars and advanced breeding lines for appropriate stem rust races.

Dr Melania Figueroa
Dr Melania Figueroa from the Commonwealth Scientific and Industrial Research Organisation (CSIRO). Photo: Kate Langford

News Archive

Power interruptions: Information for internal communication
2008-01-31

As part of the UFS’s commitment to address load shedding, the management would like to communicate the following:

The UFS mainly deals with the power interruptions by way of (a) the possible installation of equipment (e.g. generators) and (b) operational arrangements to ensure the functioning of the UFS in spite of power interruptions.

During the past week progress was made on both fronts. The information that follows resulted from a meeting of a task team of Physical Resources led by Mr Nico Janse van Rensburg, which took place on Monday 28 January (this task team naturally focuses on physical solutions) and a discussion by Exco on Wednesday 30 January 2008. Exco discussed the recommendations of the mentioned task team in respect of physical aspects, as well as the operational arrangements proposed by faculties.

Physical solutions

A Main Campus

1. New emergency power installations already approved:

Last week Exco gave its approval for the design and installation of emergency power equipment in all the large lecture-hall complexes to proceed immediately.

In all these cases

  • load surveys have been completed and a start has been made with the ordering of equipment and the process of appointing contractors. (Exco approved the adjustment of normal tender procedures in an attempt to expedite completion.)
  • generators with 20-30% more capacity than required for the current load are being ordered.
  • provision is being made for the connection of lights and at least one wall plug to the emergency power.
  • the expected construction time is 16 weeks (except in the case of the Flippie Groenewoud Building where it is 6 weeks).

The above-mentioned concerns lecture halls/ venues in the following buildings: Examination Centre, Flippie Groenewoud Building, Stabilis, Genmin and the Agriculture Building.

As far as the Agriculture Building is concerned, a larger generator (larger than required for lecture venues only) is being ordered in view of simultaneously providing essential research equipment (refrigerators, ovens, glasshouses) with emergency power within 16 weeks.

2. Investigation into the optimal utilisation of present emergency power installations

All the emergency power systems are being investigated on the basis of a list compiled in 2006 to determine whether excess capacity is available and whether it is possible to connect additional essential equipment or lights to it.

The electrical engineer warns as follows:
“Staff members must under no circumstances overload present emergency power points.

A typical example of this is a laboratory with 10 power points of which 2 points are emergency power outlets. Normally a fridge and freezer would, for example, be plugged into the two emergency power points, but now, with long load-shedding interruptions, a considerably larger number of appliances are being plugged into the power point by means of multi-sockets and extension cords. In the end the effect of such connections will accumulate at the emergency generator, which will then create a greater danger of it being overloaded and tripping, in other words, no emergency power will then be available.”

3. Requests and needs addressed directly to Physical Resources or reported to Exco via the line managers.

All the physical needs and requests addressed directly to Physical Resources or submitted to Exco via the line managers are being listed, classified and considered technically in view of their being discussed by the task team on Monday 11 February.
The information will (a) lead to recommendations to Exco regarding possible additional urgent emergency power installations, and (b) be used in the comprehensive investigation into the UFS’s preparedness for and management of long power interruptions.

Requests that can easily be complied with immediately and that fit into the general strategy will indeed be dealt with as soon as possible.

4. Purchase of loose-standing equipment: light, small, loose-standing generators, UPSs as solutions to/ aids during power interruptions

Exco approved that

a) faculties and support services accept responsibility themselves for the funding and purchase of loose equipment such as, for example battery lights, should they regard these as essential.
b) UPSs (uninterruptible power supplies) that faculties and support services wish to purchase to combat the detrimental effect of unexpected power interruptions on computer equipment) can (as at present) be purchased from own funds via Computer Services.
c) UPSs (uninterruptible power supplies) that faculties and support services wish to purchase to combat the detrimental effect of unexpected power interruptions on other types of equipment can normally be purchased from own funds with the consent of the line manager concerned.
Note: Please just make sure of the appropriateness of the equipment for a specific situation: it is not a power supply that can bridge a two-hour power interruption.)
d) small, loose-standing generators can be purchased from own funds via Physical Resources and installed under their supervision.
e) laptop computers can , where necessary, be purchased from own budgets. The availability of second-hand laptop computers must be taken into account.

B Vista

No major problems have been reported to date. The situation is being monitored and will be managed according to need. The same guidelines that apply to the Main Campus will naturally also apply to the Vista Campus.

C Qwaqwa

The situation is receiving attentions and solutions have already been found for most problems.

D General

1. All-inclusive project
A comprehensive investigation into the UFS’s preparedness for and management of long power interruptions will be launched as soon as possible. Available capacity will be utilised first to alleviate the immediate need. The needs assessment to which all faculties and support services have already contributed is already an important building block of the larger project.

2. Building and construction projects currently in the planning and implementation phase
The need for emergency power for projects such as the new Computer Laboratory is being investigated proactively and will be addressed in a suitable manner.

3. Liaison with Centlec
Attempts at direct and continuous liaison are continuing in an attempt to accommodate the unique needs of the UFS.

4. HESA meeting and liaison with other universities
A representative of the UFS will attend a meeting of all higher education institutions on 11 February. The meeting is being arranged by HESA (Higher Education South Africa) to discuss the implications for the sector, the management of risks and the sector’s response to government.

5. Internal communication
It is the intention to communicate internally after every meeting of the task team, which will take place on Mondays. Strategic Communication will assist in this regard.


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept