Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Read More Prof Wijnand Swart PSHB
A small 2 mm beetle, known as the Polyphagous shothole borer (PSHB) kills and infects trees. South Africa is the largest geographical area in the world to be infested with this tree killer. Pictured here is Prof Wijnand Swart who is working with two neighbourhood associations in Bloemfontein to monitor the occurrence of the beetle in the city.

Ornamental trees are dying all over South Africa, and it is feared that certain fruit and nut trees are also in danger. This is cause for great concern, not only among ecologists, farmers, foresters, and landscapers, but for homeowners as well. In private gardens and on streets throughout the country, trees that are afflicted include English oak, Chinese and Japanese maples, boxelder, and sweetgum.
 
The cause of all this havoc is a small 2-mm beetle, known as the Polyphgous shothole borer (PSHB; Euwallacea fornicatus) that originates from Southeast Asia.

Working to find a solution

"Based on damage seen in the USA and Israel, there is significant danger of losing many of our ornamental trees as well as fruit and certain nut trees in South Africa,” says Prof Wijnand Swart, Professor of Plant Pathology and Discipline Head in the Department of Plant Pathology at the University of the Free State (UFS).

Cases of afflicted trees were reported from all provinces in South Africa, except for Mpumalanga. Countries such as Israel and the USA have also suffered great losses as a result of this beetle.  

Research is being conducted on the beetle and its associated fungus, Fusarium euwallaceae, in order to understand their relationship and hopefully find a solution to stop, or at least manage, the invasion of trees. To investigate the largest geographical outbreak of this beetle in the world, academics from seven universities in South Africa are working together with the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria through a multi-institutional and multi-disciplinary research network. UFS researchers are part of this network.
 
Senior Lecturer in the UFS Department of Plant Sciences, Dr Gert Marais, is conducting research on the PSHB and its associated fungi, with the focus on pecan trees, in conjunction with the South African Pecan Nut Producers' Association. Cases of infected pecan-nut trees were reported in the Northern Cape as well as in Nelspruit. 
 
Prof Swart is working with entomologists in the UFS Department of Zoology and Entomology to find a biological control agent to parasitise the beetle. “I have already found one instance of a parasitic wasp associated with the beetle and will continue to search for more specimens during the coming summer,” he commented. 
 
Understanding the beetle

The first cases of infected trees were discovered in 2017 when Dr Trudi Paap, associated with FABI and the South African National Biodiversity Institute, conducted a survey of pests and diseases in and around National Botanical Gardens in South Africa. 
 
FABI has been studying the tree killer intensively to find out more about its life cycle. The term ‘polyphagous’ refers to the ability of the PSHB to infest many different tree species.

On their website, FABI states that an important distinction is being made between different types of infestations. “Reproductive host trees are trees that are infested by the beetle and where it successfully establishes a breeding gallery in which the fungus grows, where eggs are laid, and larvae develop into mature adults, thus completing its life cycle. The majority of reproductive hosts eventually succumb to the disease symptoms caused by the fungus.”
 
“Non-reproductive host trees are trees where the beetle attacks, penetrates, and inoculates the fungus, which then starts to grow in the sapwood. However, the beetle either leaves or dies without reproducing in these trees. The fungus can eventually kill or damage reproductive hosts, but many of the tree species on this list seem to be unaffected.”
 
Involving the community

The situation also provides an opportunity for communities to directly benefit from research conducted by tertiary institutions. Prof Swart is working together with two neighbourhood associations in Bloemfontein to monitor the occurrence of the beetle in the city and surrounding areas. 

He urges residents in the Mangaung Metro who find instances of infected trees, to report it to Duart Hugo (duarthugo99@gmail.com ), who is compiling a database of infected trees in the area. 
 
FABI advises homeowners to cut down heavily infested reproductive host trees. Should you decide to burn the wood, note that beetles will fly away when the wood becomes hot or when smoke appears. Do not burn infested trees in uninfected areas.

Other interesting material

News Archive

UFS PhD student receives more than R5,8 million to take agricultural research to African farmers
2015-07-06

Prof Maryke Labuschagne and Bright Peprah. (Photo: Supplied)

Bright Peprah, a Plant Breeding PhD student from Ghana in the Department of Plant Sciences at the University of the Free State received an award from the competitive Program for Emerging Agricultural Research Leaders (PEARL) of the Bill and Melinda Gates Foundation (BMGF) for one of his projects.

From the more than 750 proposals for funding that were received from African researchers, only 19 received funding from PEARL. PEARL is an agricultural initiative by the BMGF to take agricultural research products to African farmers. It also aims at involving the youth and women in agriculture.

Peprah’s proposal to introgress beta carotene into farmer-preferred cassava landraces was part of the final 19 proposals funded. The project is being led by the Council for Scientific and Industrial Research (CSIR)Crops Research Institute (CRI), and has the International Institute of Tropical Agriculture (IITA) and the International Centre for Tropical Agriculture (CIAT) as international partners with Peprah as the principal investigator.


The development of nutrient-dense cassava cultivars needs attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.
Photo: Supplied

He received $473 000 (R5,8 million) for his project on the improvement of beta-carotene content in cassava.

Peprah decided on this project because the populations of underdeveloped and developing countries, such as Ghana, commonly suffer undernourishment and/or hidden hunger, predisposing them to diseases from micronutrients deficiencies. “Vitamin A deficiency constitutes an endemic public health problem which affects women and children largely,” he says.

“In Africa, cassava is widely consumed by the populace. Unfortunately, in these areas, malnutrition is endemic to a significant extent, partly due to the low micronutrients in this tuberous root crop, which is a major component of most household diets. It is for this reason that the development of nutrient- dense cassava cultivars needs much attention to eliminate the ramifications of malnutrition among the poor in an inexpensive and more sustainable way.

“To date we have selected top eight genotypes from germplasm collected from the International Institute of Tropical Agriculture (IITA) which are high in carotenoids and also poundable, a key trait to Ghanaian farmers. These eight genotypes have been planted at different locations in Ghana, and being evaluated by different stakeholders (consumers, researchers, producers, commercial farmers, processors, etc.). If found suitable, the genotypes will be released to farmers, which we hope will solve some of the micronutrient problems in Ghana.

“My projects seek to develop new cassava varieties that will have both high dry matter and beta carotene which has been reported to be negatively correlated (as one increase, the other decreases). The breeding method will be crossing varieties that are high in beta carotene with those with high dry matter, and checking the performance of the seedlings later. Developing such new varieties (yellow flesh cassava) will increase their adoption rate by Ghanaian farmers,” he said.

Prof Maryke Labuschagne, Professor in Plant Breeding in the Department Plant Sciences and Peprah’s study leader, said: “This project has the potential to alleviate vitamin A deficiency in the West African region, where this deficiency is rampant, causing blindness in many people, especially children."

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept