Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 August 2020 | Story Anban Naidoo | Photo Charl Devenish

Students returning for the second semester should take note of the following important dates. Also note that the online self-service facility for module changes and additions will be available until 11 September 2020. If you are unable to register online and need assistance with changes to your registration, please contact your relevant faculty for academic advice/approval.

Important second-semester dates:

• 31 July 2020: Predicate day
• 3 August 2020: Main mid-year examination commences
• 22 August 2020: Main mid-year examination ends
• 22 August 2020: Final date to submit final marks for module with continuous assessment
• 24 August 2020: Mid-year additional examination commences
• 27 August 2020: Mid-year additional examination ends
• 28 to 31 August 2020: UFS long weekend (no academic activity)
• 1 September 2020: Second semester commences
• 1 September 2020: Second-semester registration commences (Faculty of Health Sciences)
• 2 September 2020: Final date to transfer marks for the first semester (excluding Faculty of Health Sciences)
• 3 September 2020: Second-semester registration commences (all faculties, excluding Health Sciences)
• 3 September 2020: Mid-year additional examination ends
• 10 September 2020: Final date to transfer marks for the first semester (only Faculty of Health Sciences)
• 11 September 2020: Second-semester registration ends
• 11 September 2020: Last date to cancel year modules and second-semester modules with financial credit
• 24 to 27 September: 2020: UFS long weekend
• 30 September 2020: Last date for master’s and doctoral students to register for the second semester
• 30 October to 2 November 2020: UFS long weekend
• 27 November 2020: Second-semester classes ends
• 30 November 2020 to 18 December 2020: Main Examinations
• January 2021 to 16 January 2021: Additional Examinations


News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept