Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 December 2020 | Story Ruan Bruwer | Photo Supplied
Karla Pretorius Gsport Awards
Flying the Kovsie flag high: Kesa Molotsane, Raynard van Tonder, Karla Pretorius, and Sikholiwe Mdletshe.

While there hasn’t been any student sporting action since the end of March, this didn’t prevent a couple of Kovsies from making the news.  

Three former Kovsie sports stars, Kesa Molotsane, Raynard van Tonder, and Karla Pretorius, as well as current student, Sikholiwe Mdletshe, received recognition. 

At the Gsport Awards (for South African females in sport), Pretorius won the Global Woman in Sport trophy thanks to her stellar 2019 performance for which she was named the Player of the Tournament at the Netball World Cup. 

Getting credit for hard work 

“I see the award as a reward for your efforts and sacrifices. I am grateful for the wonderful platform that Gsport provides women,” said Pretorius.  

The athlete, Molotsane, is one of the digital education publication Inside Education’s 100 South African shining stars. Seven individuals were recognised in the sports and recreation category for contributing to their communities through excellence in their career fields. 

“This award is not just for me, but for the community that I’m impacting. I want to continue making a change in the society through my athletics career.” 

Van Tonder won the category Four-Day Domestic Player of the Year at the Knights cricket awards function. He finished the competition as the leading run-scorer with an average of 70.25.  

“It was a very big honour to receive the credit for your hard work. It wouldn’t have been possible without the incredible support of my Knights teammates and the great work of our coaching staff.” 

Mdletshe, captain of the South African U21 netball team in 2019 and 2020, feature among the newspaper Mail & Guardian’s 200 young South Africans. She is one of six winners in the sports category. “I see this as an opportunity to keep learning, growing, and using what I have to make the changes that we as young individuals want to see. The change we want to see starts with us.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept