Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Prof Danie Vermeulen, Prof Arno Hugo, and master’s student in Consumer Sciences, Mandisa Masuku in the newly renovated sensory laboratory in the Agricultural Building on the UFS Bloemfontein Campus.
Prof Danie Vermeulen, Prof Arno Hugo, and master’s student in Consumer Sciences, Mandisa Masuku in the newly renovated sensory laboratory in the Agricultural Building on the UFS Bloemfontein Campus.

Imagine all food tasting the same …

Fortunately, this is not the case, as consumers like to enjoy what they eat. Tasting food is important because it enables suppliers to adapt food products to consumers’ preferences.

According to Prof Arno Hugo of the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS), it is important for food companies to make sure that new food products are acceptable to consumers before launching such products. Often, companies also want to confidentially compare and profile their new or even established products against their competitors’ products. Lately, food companies also have the need to adapt European or North American food products for the local consumer (Africanisation of food products). Independent sensory laboratories are needed for such work. 

Dr Carina Bothma, Senior Lecturer and sensory science expert – also from the Department of Microbial, Biochemical and Food Biotechnology – who manages the sensory laboratory, says the laboratory at the university performs sensory analysis, which is a scientific discipline used to evoke reactions from humans regarding the five senses of sight, smell, touch, taste, and hearing. These reactions can be captured from first bite to complete mastication and are then statistically analysed and interpreted by a sensory analyst.

With the support of the Dean of the Faculty of Natural and Agricultural Sciences, Prof Danie Vermeulen, a project to the value of R3 million to upgrade the existing sensory laboratory in the Agricultural Building on the UFS Bloemfontein Campus, is nearing completion. Minor improvements will be completed by June 2020.

According to Dr Bothma, upgrades were done in three sections, including a training area (with seating for 12 trained panellists); a computerised 12-booth tasting area (with a three-light communication system); and a preparation area. The latter consists of a walk-in fridge and walk-in freezer, a 10-rack industrial steam-jet oven, a ventilation system to control and maintain a negative pressure in the preparation area – so that odours do not move to the tasting area, two mobile units with four gas plates in each unit, and a sputum and control area equipped with a computer.

Prof Hugo, who is mainly responsible for planning trials and statistical analyses of sensory data, says the sensory laboratory is truly a fantastic facility and big asset for the university. “I think it is one of the best-planned and best-equipped sensory laboratories in South Africa.”

Alternative food products profiled

He continues: “Several sensory studies have been done regarding the influence of salt reduction on the meat quality of various meat products, as well as the effect of different feed supplements on meat quality. Meat was also evaluated, comparing the meat quality of animals from different production systems.”

Dr Bothma states that food products to be evaluated vary and may include new products in product development. “Several interesting food products have been tested in the lab so far. Underutilised vegetables such as amaranth and cactus pears, and newly introduced crops such as edamame, have been evaluated.  Ancient grains such as fonio have also been profiled.  An African staple, amagwinya, is currently being profiled, as well as food products containing insect flour,” she says.

Testing and teaching

According to Dr Bothma, a trained panel consisting of 10 to 12 panellists is highly trained to verbally describe a food product or characteristic.  For other tests, consumers of a specific food product to be tested, are sourced. Such a panel can consist of between 75 and 300 persons, depending on the requirements of the client.  Panels can also be compiled according to specific demographics. All demographic information remains anonymous.  

Sensory analysis forms part of academic research projects and a number of PhD and master’s degrees have been done in the laboratory. 

She says: “Postgraduate students work in the sensory lab under supervision of the sensory analyst. They personally recruit panellists on the campus, referred to as 'convenience sampling'. These assistants do the preparation for the tasting, preparing up to 500 individual samples for a test that has 100 panellists and five products.  They attend to the panellists, serve the samples, collect and decode ballot sheets, and enter data into Excel for statistical analysis.”

More than 20 accredited scientific articles have already been published from research done in this laboratory.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept