Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Prof Danie Vermeulen, Prof Arno Hugo, and master’s student in Consumer Sciences, Mandisa Masuku in the newly renovated sensory laboratory in the Agricultural Building on the UFS Bloemfontein Campus.
Prof Danie Vermeulen, Prof Arno Hugo, and master’s student in Consumer Sciences, Mandisa Masuku in the newly renovated sensory laboratory in the Agricultural Building on the UFS Bloemfontein Campus.

Imagine all food tasting the same …

Fortunately, this is not the case, as consumers like to enjoy what they eat. Tasting food is important because it enables suppliers to adapt food products to consumers’ preferences.

According to Prof Arno Hugo of the Department of Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS), it is important for food companies to make sure that new food products are acceptable to consumers before launching such products. Often, companies also want to confidentially compare and profile their new or even established products against their competitors’ products. Lately, food companies also have the need to adapt European or North American food products for the local consumer (Africanisation of food products). Independent sensory laboratories are needed for such work. 

Dr Carina Bothma, Senior Lecturer and sensory science expert – also from the Department of Microbial, Biochemical and Food Biotechnology – who manages the sensory laboratory, says the laboratory at the university performs sensory analysis, which is a scientific discipline used to evoke reactions from humans regarding the five senses of sight, smell, touch, taste, and hearing. These reactions can be captured from first bite to complete mastication and are then statistically analysed and interpreted by a sensory analyst.

With the support of the Dean of the Faculty of Natural and Agricultural Sciences, Prof Danie Vermeulen, a project to the value of R3 million to upgrade the existing sensory laboratory in the Agricultural Building on the UFS Bloemfontein Campus, is nearing completion. Minor improvements will be completed by June 2020.

According to Dr Bothma, upgrades were done in three sections, including a training area (with seating for 12 trained panellists); a computerised 12-booth tasting area (with a three-light communication system); and a preparation area. The latter consists of a walk-in fridge and walk-in freezer, a 10-rack industrial steam-jet oven, a ventilation system to control and maintain a negative pressure in the preparation area – so that odours do not move to the tasting area, two mobile units with four gas plates in each unit, and a sputum and control area equipped with a computer.

Prof Hugo, who is mainly responsible for planning trials and statistical analyses of sensory data, says the sensory laboratory is truly a fantastic facility and big asset for the university. “I think it is one of the best-planned and best-equipped sensory laboratories in South Africa.”

Alternative food products profiled

He continues: “Several sensory studies have been done regarding the influence of salt reduction on the meat quality of various meat products, as well as the effect of different feed supplements on meat quality. Meat was also evaluated, comparing the meat quality of animals from different production systems.”

Dr Bothma states that food products to be evaluated vary and may include new products in product development. “Several interesting food products have been tested in the lab so far. Underutilised vegetables such as amaranth and cactus pears, and newly introduced crops such as edamame, have been evaluated.  Ancient grains such as fonio have also been profiled.  An African staple, amagwinya, is currently being profiled, as well as food products containing insect flour,” she says.

Testing and teaching

According to Dr Bothma, a trained panel consisting of 10 to 12 panellists is highly trained to verbally describe a food product or characteristic.  For other tests, consumers of a specific food product to be tested, are sourced. Such a panel can consist of between 75 and 300 persons, depending on the requirements of the client.  Panels can also be compiled according to specific demographics. All demographic information remains anonymous.  

Sensory analysis forms part of academic research projects and a number of PhD and master’s degrees have been done in the laboratory. 

She says: “Postgraduate students work in the sensory lab under supervision of the sensory analyst. They personally recruit panellists on the campus, referred to as 'convenience sampling'. These assistants do the preparation for the tasting, preparing up to 500 individual samples for a test that has 100 panellists and five products.  They attend to the panellists, serve the samples, collect and decode ballot sheets, and enter data into Excel for statistical analysis.”

More than 20 accredited scientific articles have already been published from research done in this laboratory.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept