Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 January 2020 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Prof Aliza le Roux and Dr Mpho Romoejane
Prof Aliza le Roux and Dr Mpho Ramoejane (camera-trap expert) at a wetland area in the Golden Gate National Park, searching for the rare white-winged flufftail.

The White-winged Flufftail, a highly endangered bird species, was spotted less than 70 km from the UFS Qwaqwa Campus, home of the Afromontane Research Unit (ARU). In collaboration with BirdLife South Africa, the ARU is conducting a study to find out if this species also made its home in the Golden Gate Highlands National Park.

This rare species has so far only been found at three sites in South Africa.


Study to benefit local community

One of the ARU’s goals is to undertake research that will benefit the local communities, including SANParks. Should it be confirmed that these rare birds are also found in the area, the status of the Golden Gate Highlands National Park in the Important Birding Area (IBA) directory is likely to increase.

Prof Aliza le Roux, Associate Professor in the Department of Zoology and Entomology on the Qwaqwa Campus of the University of the Free State (UFS) and affiliated to the ARU, is conducting the study. She is also involved in other wetland studies.

According to Prof Le Roux, it is very difficult to find the bird. In a study, Prof Le Roux, Dr Sandy-Lynn Steenhuisen (botanist in the Department of Plant Sciences), and Dr Ralph Clark (ARU Director) have been deploying song meters in a rolling grid in the wetland areas, recording all bird noises around dawn and dusk. This is a non-invasive method to record bird sounds and helps to maintain the health of wetlands.

With these song meters they are trying to create a soundscape of the wetlands, recording all the sounds of the area by changing the location of the song meters every two weeks to cover the entire 2 km-long wetland area. Soundscape ecology is a fairly new technique and could be an effective way of measuring wetland health in high-altitude settings.

“In contrast with camera traps, song meters do not need a direct line of sight to record the presence of a specific bird – it can pick up songs from 150 m away in all directions. Camera traps may, however, be useful for adding visual confirmation of any bird’s presence, which is useful for a species that has only been heard a few times. In fact, no recording of the White-winged Flufftail’s call is currently in the public domain,” says Dr Le Roux.


Collaboration with Japanese university

Using these recordings from the soundscape, the team identifies the different bird, frog, and insect sounds recorded. According to Prof Le Roux, they are fairly new to the process and she would like to learn more, specifically about the analysis of the song diversity. She is visiting researchers at the Okinawa Institute of Science and Technology (OIST) in Japan in early December to investigate the variety of tools available to effectively analyse terabytes of acoustic data. Researchers at OIST have done similar studies on soundscapes in Okinawa along an urban gradient, and their expertise as well as access to a supercomputer could boost this research significantly.

The Qwaqwa area is on the border of the White-winged Flufftail’s expected distribution range.

“Because they and their habitat are threatened,
we are not sure if they are in the area;
and whether they may only be here to breed.”
—Prof Aliza Le Roux,
Associate Professor, UFS.


“If we find that they did make the park their home, they will be more protected, as the park is a conservation area.”


Grasslands

Prof Aliza le Roux and Dr Mpho Ramoejane (camera-trap expert) at a wetland area in the Golden Gate National Park. The wetlands often get trampled, affecting the condition of the area. Interestingly, trampling improves conditions for flufftails, as the cattle open up spaces between the reeds.

Photo: Leonie Bolleurs

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept