Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 July 2020 | Story Andre Damons | Photo Supplied
Prof Aliza le Roux; Dr Martin Nyaga, and Prof Robert Bragg.

There will be more pandemics in the future and some scientists feel that the current COVID-19 pandemic, which has already infected more than 16 million people and killed more than 600 000 people worldwide, is only a dress rehearsal for an even bigger pandemic. 

Prof Robert Bragg, researcher in the Department of Microbial, Biochemical and Food Biotechnology, and Prof Aliza le Roux, Assistant Dean: Natural and Agricultural Sciences and Associate Professor: Zoology and Entomology at the University of the Free State (UFS), warn about future pandemics, saying that humans’ interaction with animals and lack of learning from the past are the reasons for this. 

 Another researcher, Dr Martin Nyaga, Senior Lecturer/ Researcher: Next Generation Sequencing (NGS), agrees with Profs Bragg and Le Roux about new viruses and says viruses will keep emerging due to the general nature of viruses.

More pandemics might be on the cards

 “There will be more pandemics, and there is a feeling among some scientists that this could just be a dress rehearsal for the real big pandemic. Many virologists, including me, have been predicting an influenza pandemic for many years. Mankind has been warned about the coming pandemics for many years, but people seem to want to listen only when they are in the midst of a pandemic.”

“The bird-flu virus, Influenza H5N1, has a mortality rate of around 60-65%, but it has not yet developed human-to-human transmission. If this virus does develop human-to-human transmission, we could be in for a really serious pandemic! We need to prepare for the next major pandemic,” says Prof Bragg. 

Prof Le Roux says humans’ need for affordable meat on a regular basis is creating the perfect breeding ground for more diseases like this. “This means our demand for meat is driving cheaper and less controlled agricultural practices, cramming more animals into smaller spaces, feeding them less and less natural fodder. 

“Remember mad cow disease? Have you seen chicken batteries? We should not blame ‘exotic’ eating practices, but look at our own. If we could see eating meat as a ‘treat’ and not a daily ‘right’, we can reduce pressure on the environment and reduce the speed at which another zoonotic virus can evolve,” according to Prof Le Roux.

Dr Nyaga says that more viruses are possible in other organisms as well. 
“In as much as research on viral particles continues, more outbreaks are possible within not only the coronavirus domain, but also any other class of organisms. The ever-changing nature of viruses, mainly due to mutations and other mechanisms of genetic diversity, could occur through chain of transmission, including via the intermediate hosts. This kind of antigenic mutations could make the general population vulnerable due to lack of immunity against the new strains of emerging strains or completely novel viruses,” says Dr Nyaga.

Origin of SARS-CoV-2 and other diseases

According to Prof Bragg, the previous coronavirus that led to SARS and caused major concerns, also started in a wet food market in China – just like COVID-19. That virus was traced to a civet cat used for meat in such a wet food market. This virus had a very high mortality rate but could only be transmitted when a person showed clinical signs. Therefore, measuring the temperature of people was useful and beneficial. 

“There are many other examples of serious human pandemics which was spread from animals to humans. Another good example is the Ebola virus, which has also been traced to people eating bats in Africa. Yet another example is HIV, which is believed to have spread to man as a result of the consumption of chimpanzee meat.” 

“The most serious has been the 1918 Spanish flu, which started off in pigs and spread to man. All of these have to do with the mistreatment of animals by man,” says Prof Bragg.

Learning from past pandemics

Prof Le Roux says past pandemics can teach us how to respond from a public health perspective. “If we found treatments that worked before, we can use that as a starting point for current treatments. But if we can’t even control human behaviour (learning from past mistakes), think of how much more challenging it is to develop a vaccine against a virus that is so adaptable.”

Prof Bragg adds: “Mankind should also have learned lessons from the 1918 pandemic, but man is notoriously slow at learning lessons from the past. Each generation wants to make their own mistakes. One can only draw parallels from the people who defined lockdown regulations in 1918 to celebrate the end of the First World War and the demonstrations currently underway in the USA.” 

“The celebrations in 1918 caused more deaths than have occurred during the four years of the First World War! I predict that within a week or two, the number of cases and mortalities in the USA (and around the world) are going to skyrocket,” says Prof Bragg.

Knowing the animals involved

Dr Nyaga explains that identification of the source (reservoir hosts) and the intermediate host(s) is crucial in devising strategies, including palliative measures and designing drugs or vaccines against a potential pathogenic agent such as SARS-CoV-2. This will help in understanding the genomic dynamics and likely immunological responses that could be triggered along the chain of transmission to humans, and more importantly, how the compounds in the therapies can terminate the different stages of viral replication.

Prof Le Roux says she is not sure if a vaccine would be developed based on knowledge of a host species, but there is the possibility that (depending on the species) we can use some of the host’s antibodies to develop our own antibody therapies. “But generally, the knowledge can help more long-term planning on how to avoid future host shifts to humans. If we know where the virus originated, we can study that species or group of species better, and understand how the mutations occurred, etc. It would help us with future prevention more than current mitigation, I think.”

Research in the fight against COVID-19

According to the experts, various research efforts are afoot on the control of the disease. These range from the development of a vaccine, development of antiviral drugs, and the development of monoclonal antibodies or antibody fragments. Research is also needed on improved, faster, and cheaper diagnostic tests to test for the presence of the virus as well as for the detection of antibodies against the virus in people. This last test is needed to demonstrate the efficacy of vaccines as well as people in the population who have recovered from the virus. 

Prof Bragg says research on the epidemiology of the virus is also needed. How far it can spread and how long it can survive are critical questions, particularly when talking about social distancing. Much of the current information is based on guesswork.  

“Worldwide, research efforts are gaining an understanding of the virus and how it is causing disease in humans. If you think that this virus was unknown before December 2019, mankind has very quickly learned a lot about this virus and there are many very interesting articles coming out on what receptors the virus binds to and how the virus causes damage to the host and overcomes the host defence mechanisms,” says Prof Bragg.

Dr Nyaga says while the understanding of SARS-CoV-2 and COVID-19 is still in its infancy, results are already emerging on the molecular dynamics and immunological perspectives of the virus. With the characterisation of the genomic sequences of the virus, it has been possible to design several vaccines, including the inactivated virus, viral vectors, nucleic acid-based and protein-based vaccines. A good number of them are currently under clinical trials for possible WHO qualification towards global use. 

“Just recently, a clinical trial on one of these vaccines, called ‘the South African Ox1Cov-19 Vaccine VIDA-trial’, was on schedule locally to be championed by the University of the Witwatersrand, Johannesburg,” says Dr Nyaga. 
According to him, effective prevention essentially requires an in-depth understanding of the clinical severity of COVID-19, the extent of transmission and infection, and the efficacy of treatment options in order to accelerate the development of diagnostics and treatment options.

Prof Bragg says that the socio-economic impact of the virus is very serious at this stage. The final number of human cases and fatalities are still a long way from completion.  This virus is going to be with us for quite some time and the mortality rate in some countries with high levels of HIV and TB could become very high.

UFS-NGS part of COVID-19 research

The UFS-NGS Unit is privileged and well-positioned for high-throughput genomic work, attracting several high-profile projects prior to the COVID-19 outbreak and several funding calls for rapid response to COVID-19 during this pandemic period. Specifically, in this time of COVID-19, the UFS-NGS unit may be involved in proposed consortiums and current partnerships with several national and international organisations undertaking COVID-19 research. These include the Durban University of Technology in South Africa, the College of Medicine in Malawi, the University of Embu in Kenya, the Kenya Medical Research Institute, and the University of Ibadan in Nigeria, among others, working on COVID-19 projects to understand the evolving features of SARS-CoV-2 in Africa, with a view to tendering indigenous solutions to the outbreak.

News Archive

A year of various highlights for UFS
2016-12-19

Some other highlights:

Description: Prof Maryke Labuschagne, Bloemfontein Highlights Tags: Prof Maryke Labuschagne, Bloemfontein Highlights
The UFS was awarded five SARChI
(South African Research Chairs Initiative)
research chairs, the main goal of which is
to promote research excellence.
Read the full story


Description: Alumni Awards, Bloemfontein highlights Tags: Alumni Awards, Bloemfontein highlights

The UFS Chancellor’s Distinguished
Alumni Awards ceremony was held on
5 November 2016 on the
Bloemfontein Campus.
Read the full story


Description: Candice Thikeson, Bloemfontein Highlights Tags: Candice Thikeson, Bloemfontein Highlights

UFS student Candice Thikeson
completed a hat-trick of accolades when
she was named recipient of the Abe Bailey
Travel Bursary.

Read the full story

 

Description: Reitumetse Maloa, Bloemfontein Highlights Tags: Reitumetse Maloa, Bloemfontein Highlights

Reitumetse Maloa, a young researcher
at the UFS, is searching for a solution to
South Africa’s energy and electricity
problems from a rather unlikely
source: cow dung.

Read the full story


It was a year of various highlights for the University of the Free State (UFS) which has again illustrated the institution’s versatility by excelling on various fronts, from sports to research.

Some of these included Wayde van Niekerk winning a gold medal at the Olympic Games in Rio de Janeiro; research on the locomotion of the giraffe, and the awarding of honorary doctorates to people such as veteran journalist Max du Preez.

Van Niekerk breaks 400m world record

After his feat in Rio on 14 August 2016, Van Niekerk was described as “the next star” by former US sprinter Michael Johnson, whose 17-year-old 400m world record he broke in a time of 43,03. Johnson described the way in which the Kovsie outperformed the 400m field as “a massacre”.

Wayde van Niekerk was described as “the next star" by Michael Johnson, whose 17-year-old 400m world record he broke in a time of 43.03.


Max du Preez and Trevor Manuel honoured


Du Preez (Humanities) said he was excited about the young minds he had interacted with at the Winter Graduation ceremony of the UFS. The leading journalist and political analyst was one of four recipients of honorary doctorates from the university on June 30 2016. The others were Prof Joel Samoff (Humanities), former finance minister Trevor Manuel, and Dr Reuel Jethro Khoza (both Economic and Management Sciences.

Research of great value for conservation


Dr Francois Deacon, Department of Animal, Wildlife, and Grassland Sciences at the UFS, and Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, conducted research on the manner in which giraffes locomote from one place to another.

Very little research has been done on the manner in which these animals move. The research will assist in understanding aspects such as the giraffe’s anatomy and function, as well as the energy it utilises in locomoting. Such information could help researchers understand where giraffes fit into the ecosystem and the data would be of great value for large-scale conservation efforts.

 

 

 

Read more on these highlights:

 

Wayde van Niekerk:

15 August 2016: Wayde the next big star, says Michael Johnson
20 September 2016: I don’t see myself as a star, says Wayde
27 October 2016: Wayde, Karla shine again at KovsieSport gala night
24 November 2016: Wayde keeps winning off the track

Honorary doctorates:

29 June 2016: UFS will award four honorary doctorates during Winter Graduation ceremonies
2 July 2016: Trevor Manuel and Max du Preez among the recipients of honorary doctorates at UFS graduation

Giraffe research:

9 March 2016: Giraffe research broadcast on National Geographic channel
23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
18 November 2016: Studies to reveal correlation between terrain, energy use, and giraffe locomotion

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept