Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 July 2020 | Story Leonie Bolleurs | Photo Supplied
The teaching project of Drs Matthew Huber and Martin Clark on utilising aerial photography and 3D models increased student engagement in Geology field studies.

The goal of an educator, as seen by Dr Matthew Huber and Dr Martin Clark, is to try and improve the understanding of students. They believe that by combining technological and geological elements within the framework of games, students not only learn but also enjoy the process.

Dr Huber and Dr Clark are from the Department of Geology at the University of the Free State (UFS).

By bringing innovative methods into their teaching processes, they have successfully enhanced student engagement and learning in Geology field studies.

Limited innovation equals limited engagement

As part of the third-year Economic Geology and Exploration Geology courses, students were taken on a field trip to the Vredefort impact structure and an active gold mine. At the Vredefort structure, they were able to view the rock types mined for gold – which are exposed on the surface – to prepare them to identify the rocks when going underground. They also visited an open-pit quarry that was mined for granite dimension stone in the 1950s.  

Fot the visit to the quarry, the students were given ‘traditional’ assignments in advance to make measurements, sketch relevant features, and write down observations. 

“We found that they were not particularly engaged in what they were doing; it was simply an assignment that was separated from any deeper meaning in their minds,” explains Dr Huber.

The status quo of student engagement was about to change. Dr Huber and Dr Clark put their heads together and had a long discussion on how they could improve the exercise. 

Innovative methods equal increase in engagement

“We realised that we could change the focus of the exercise entirely by framing it as a game. When the exercise started, the students were divided into ‘companies’, and then told that they had to pick blocks with particular features to extract from the quarry. They were given parameters concerning how much various aspects of the activity would cost and were then told to make as much money as possible. We did not give them any particular measurements but provided them with all the tools they needed.”

“This had a transformative effect on the students – instead of being bored with the quarry exercise, they were begging for more time to look at the rocks, coming up with innovative solutions on their own,” says Dr Huber.

He believes this is what student engagement means. “Even though we did not assign any particular measurements for the students to do, most of them were diligently making measurements and even arguing with one another about the best way to pick out blocks,” he adds.

To evaluate the students, Dr Clark brought in a technological aspect to the exercise. He made a 3D model of the quarry while the game was in progress, which was used at the end of the task. 

“The students showed us the blocks that they had picked out on the digital 3D model, which we could rapidly evaluate. In addition, they had an opportunity to look at the problem from a different perspective, resulting in ‘last minute’ innovative solutions. The exposure to this type of digital interaction on a traditional geological excursion has increased the ‘cool’ factor for the students and subjected them to new ways of problem-solving – similar to what they can expect later in their careers,” explains Dr Clark.


Innovative methods equal more possibilities

Both Drs Clark and Huber agree that the feedback they received from the students was amazing. “They did not want the assignment to end, and unanimously petitioned us for more time in the quarry, driven by their desire to make the best decisions for their groups. This level of passion from students has never been experienced by either instructor on any other field course,” adds Dr Huber. 

Although games are not a new concept in education, the two academics say they are not aware of any other institution that has attempted to digitally recreate a site for students in real time with this type of game. Drs Clark and Huber also wrote an academic article that is currently in revision for the Journal of Geoscience Education, titled, ‘Using gamification and fourth industrial revolution components to enhance student engagement in traditional field exercises for economic geology students’.

“The other wonderful aspect of this type of exercise is that we now have a digital archive of the site, and we can use that in both student training and our research. In times like now, where it is difficult to travel to the field, this type of model of geological exposures is invaluable,” says Dr Clark. 

They both believe the attitude and philosophy of the educators are very important in terms of student training. Regardless of whether face-to-face or online teaching is offered, there can be a good response to games used in the classroom.

“The more learning scenarios we can expose students to in fun, enjoyable, and innovative ways, the more likely we will spark lifelong passions that they can take with them through their careers. Our goal is not only to create good students but give them the tools to become thought leaders for the next generation of learners,” says Dr Clark.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept