Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 October 2020 | Story Andre Damons
Prof Ivan Turok
Prof Ivan Turok, National Research Foundation research professor at the University of the Free State (UFS) and distinguished research fellow at the Human Sciences Research Council (HSRC).

New evidence provides a detailed picture of the extraordinary economic fallout from the COVID-19 pandemic. All regions lost about a fifth of their jobs between February-April, although the cities began to show signs of recovery with the easing of the lockdown to level 3. Half of all adults in rural areas were unemployed by June, compared with a third in the metros. So the crisis has amplified pre-existing disparities between cities and rural areas.

Prof Ivan Turok, National Research Foundation research professor at the University of the Free State (UFS) and distinguished research fellow at the Human Sciences Research Council (HSRC), and Dr Justin Visagie, a research specialist with the HSRC, analysed the impact of the crisis on different locations in a research report (Visagie & Turok 2020).

The main conclusion is that government responses need to be targeted more carefully to the distinctive challenges and opportunities of different places. A uniform, nationwide approach that treats places equally will not narrow (or even maintain) the gaps between them, just as the blanket lockdown reflex had adverse unintended consequences for jobs and livelihoods.

According to the authors, the crisis has also enlarged the chasm between suburbs, townships and informal settlements within cities. More than a third of all shack dwellers (36%) lost their jobs between February and April, compared with a quarter (24%) in the townships and one in seven (14%) in the suburbs. These effects are unprecedented.

Government grants have helped to ameliorate hardship in poor communities, but premature withdrawal of temporary relief schemes would be a serious setback for people who have come to rely on these resources following the collapse of jobs, such as unemployed men.

Before COVID-19

In February 2020, the proportion of adults in paid employment in the metros was 57%. In smaller cities and towns it was 46% and in rural areas 42%. This was a big gap, reflecting the relatively fragile local economies outside the large cities.
Similar differences existed within urban areas. The proportion of adults living in the suburbs who were in paid employment was 58%. In the townships it was 51% and in peri-urban areas it was 45%.

These employment disparities were partly offset by cash transfers to alleviate poverty among children and pensioners. Social grants were the main source of income for more than half of rural households and were also important in townships and informal settlements, although not to the same extent as in rural areas.  

Despite the social grants, households in rural areas were still far more likely to run out of money to buy food than in the cities.

How did the lockdown affect jobs?

The hard lockdown haemorrhaged jobs and incomes everywhere. However, the effects were worse in some places than in others. Shack dwellers were particularly vulnerable to the level 5 lockdown and restrictions on informal enterprise. This magnified pre-existing divides between suburbs, townships and informal settlements within cities.
There appears to have been a slight recovery in the suburbs between April-June, mostly as a result of furloughed workers being brought back onto the payroll. Few new jobs were created. Other areas showed less signs of bouncing back.

Overall, the economic crisis has hit poor urban communities much harder than the suburbs, resulting in a rate of unemployment in June of 42-43% in townships and informal settlements compared with 24% in the suburbs. The collapse poses a massive challenge for the recovery, and requires the government to mobilise resources from the whole of society.


News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept