Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 October 2020 | Story Leonie Bolleurs | Photo Supplied
Prof Kahilu Kajimo-Shakantu believes there are a number of benefits and lessons that the construction industry can draw if they adopt technology that can lead to sustainable construction beyond the COVID-19 era.

The construction business has been hit hard, with various negative impacts on cost, implementation timelines, profits, and others. Increased and smart adoption of technology, however, can transform the sector to make it more sustainable. 

This is the belief of Prof Kahilu Kajimo-Shakantu, Head of the Department of Quantity Surveying and Construction Management at the University of the Free State (UFS).

As president of the Association of Schools of Construction of Southern Africa (ASOCSA), she delivered the welcoming address of the 14th Built Environment conference (21, 22 September 2020). Prof Kajimo-Shakantu is the sixth president of ASOCSA.

The theme of this year’s built-environment conference, presented for the very first time in a virtual format, was Technology, Transformation and Sustainable Construction.

Identify and harness opportunities 

“It is clear that while COVID-19 remains a challenge, opportunities can be identified and harnessed even by our own construction industry through the exploitation of technological, transformative, and sustainable practices. The technology and transformation taking place now – in South Africa and beyond this COVID-19 situation – should be embraced for competitive advantage, even after the pandemic disappears,” said Kajimo-Shakantu.

Clients, consultants, contractors, and suppliers of materials and services can wholly embrace technology and transformation for sustainable, cost-effective, less wasteful, and cleaner construction processes. – Prof Kahilu Kajimo-Shakantu


She also provided some practical suggestions: “Technologies such as remote monitoring of construction sites and selected construction site operations through high-definition cameras and robust software should be encouraged as a way of minimising health and safety risks and mobility costs during the project duration, and at the same time ensuring an all-time virtual presence on site for various purposes.”

“Virtual contract progress meetings, site meetings, and supervision of specialised work are some of the benefits that the construction industry could gain if they adopt technology that can lead to sustainable construction beyond the COVID-19 era,” she added. 

Encourage meaningful partnerships

It is no longer a case of business as usual. Prof Kajimo-Shakantu believes stronger collaboration and meaningful partnerships must be encouraged among all stakeholders if the conference theme is to be fully actualised for the benefit of the construction industry, as it races towards attaining sustainable construction.

She said: “Clients, consultants, contractors, and suppliers of materials and services can wholly embrace technology and transformation for sustainable, cost-effective, less wasteful, and cleaner construction processes.”

Many insightful and thought-provoking papers touching on construction industry challenges and opportunities, as well as the teaching and learning of students, were delivered by both local and international delegates. 

The conference is believed to be one of the major cutting-edge built-environment conferences on the African continent. 

A guest of honour at the event was the Vice-Rector: Academic at the University of the Free State, Dr Engela van Staden. In her welcome address, she challenged delegates to establish a consistent channel for disseminating some of the research outcomes to industry stakeholders, including the respective government departments. “It is time to go beyond building rich databases and prestigious publications for our universities,” she said.

Keynote speakers included Prof Monty Sutrisna, Professor of Construction and Project Management and the Head of the School of Built Environment at Massey University, New Zealand; Prof Obas John, Professor of Sustainability and Environmental Law and Director of Internationalisation at London South Bank University; Prof David Edwards, Professor of Plant and Machinery Management, Birmingham City University, England; and Dr Reza Hosseini, the Associate Head of School (research) in the School of Architecture and Built Environment, Deakin University, Australia.

The various interesting peer-reviewed research papers that were delivered, addressed topical issues that affect the built environment not only in South Africa, but also in the regions beyond.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept